零售百货的大数据转型, 怎么转才能行_数据分析师考试
从目前各大报章杂志的分享文章来看,不难发现零售百货业除了谈新增在线电子商务渠道外,就是谈如何做好库存管理、如何防损、如何陈列等,营运的核心大多落实在商品本身。不置可否,这些都是成为一个好的零售百货要有的基本功,因为将商品卖出是企业基本的获利公式。但当你回过头来想,这些商品售出获得的营收,贡献来源是什么呢? 答案很明确,就是掏钱的顾客,当顾客走进你的门店,你完美的陈列才开始发挥作用,你的库存管理才开始有意义,而电子商务正是抓准时机,运用网络上一览无遗的消费者行为数据,以顾客为核心做决策及广告宣传,精准营销成功提升利润空间,那么我们何不让线下实体商店,也借由消费者交易数据,来为营销做更好的决策。
从经营商品到经营顾客的大数据时代思考
零售百货应该从过去“经营商品”的思维,转向以消费者为核心的“经营顾客”,而大数据时代,正是观点转型的最好时机。举例来说,过去零售业大多停留在营销1.0的被动策略,消费者要什么,商家就尽量提供,或以营销2.0主动策略,创造差异化去吸引消费者,虽然已从产品核心转向消费者核心,但创造的价值又不见得让消费者赏脸!大数据时代,是带领零售百货业走向互动营销3.0,经营需求的革命时代。过去,我们只能借由数据解决问题,而现在,我们能预测未来,从掏钱顾客的真实行为数据中,算出在什么时机,提供什么商品宣传,顾客会再把钱掏出!并在顾客付钱的同时,获得数据反馈,成为互动学习循环,使营销在决策中能不断优化,而消费者也能获得越来越好的服务,增加对品牌的黏度、忠诚度,最后零售百货业不但能提升营收利润,更能从经营顾客的数据中,规划商品策略。
MIGO功典信息CEO陈杰豪举例,通过经营顾客的方式,将某个内衣品牌客户的所有顾客数据如网站浏览轨迹、下单产品及频率、年收入、过往消费习惯等一一记录卷标,这些大大小小的标签,通过大数据的运算让每个顾客跃然“报表”之上,并找到“最可能在12月购买的顾客”,推播客制化的商品讯息,使每年业绩最差的12月,成功转为营收大幅提升的最佳月份。
当大家都在说零售百货受到电子商务冲击,该转型的同时,你的营运观点转型了吗?把过去习惯分析的商品销售营收方程式放到一边,改为经营顾客的营收方程式吧!
不要猜!人店物通了,钱流就通了
要成为经营顾客的零售商,数据的整合流通是很重要的一环,让交易数字与顾客数据串连,线上与线下顾客的资料配对,看到顾客、门店、商品之间的数据关系,才能真正掌握大盘,做出适当的决策。现如今营销面临的问题,是习惯使用的ERP、CRM或POS系统,数据皆分开独立记录,2014年的一项零售调查显示,大部分的零售商拥有的POS机不支持多样化的数字或跨渠道的购物体验,传统的POS系统是目前最迫切的技术障碍,营销人在这些碎片化的数据当中,只能看见数字结果,难以进一步交叉判断造成的原因,最终只能凭借着经验和所谓的常规拍脑袋决定;这种用“猜”的决定,一直是做营销的痛。而大数据时代,零售百货就应该利用大数据的搜集整合,将“猜”的元素拿掉,透彻了解顾客、门店、商品之间的关系和营收组成结构,规划有凭有据的精准对策,钱流也就跟着通了。
举个例子,当店家发现营收下滑,营销人员照例打开POS系统产生报表,检视品项销售状况、来客数与客单价等数据,然后一眼看到来客数下滑,就直接判定了来客数疲软不振是造成营收衰退的罪魁祸首,立马决定砸下百万预算,安排来店赠礼活动增加来客数,期望能够一举提升销售动能、拉抬业绩。结果来客数确实明显增加了,但营收却仍旧没什么起色,这一切归根到底都是因为数据的碎片化所造成的后果。藏在数据背后真正造成店家营收下滑的原因,其实是高贡献度的忠诚顾客大量而且快速的流失,活动提升的新顾客对营收帮助渺小。当务之急应该是先找出忠诚顾客流失原因、制订客户挽回方案,固本补破再去招客。
看错了数据、会错了意,不但会让店家消耗了无谓的营销预算和时间,更给了竞争对手可趁之机,这一来一往之间,胜负立判、能不慎乎?
进入大数据营销真的不难
大数据议题已发酵了几年,但真正落地执行,甚至产出价值的却不多。企业往往将问题归咎于自身规模是否够大、资源或数据量是否充足而观望不前。事实上,想加入大数据营销,并没有那么难,因为数据营销带给零售业的决策优化,关键不在于数据多寡,也无需大量投入资源,利用市场上已有专业大数据方案,就能轻松解决技术及统计可能造成的问题。企业真正该做的是找出“想用数据解决什么问题?”,再以此方向搜集整合关键数据,而非一股脑的只想搜集“大量”数据。
阿里巴巴唯一大数据应用合作伙伴─MIGO功典信息为B2C平台“天猫商城”中的商家,打造大数据营销应用程序“标签智库”,即是用数据解决天猫商家投入庞大广告费,投资报酬率却过低的问题。“标签智库”将所有阿里巴巴会员定义人群标签,24小时动态更新运算,并分析个别商家所属消费族群形态,天猫商家通过使用“标签智库”,挖掘出与自家顾客消费习惯相仿的阿里巴巴会员,精准投放广告,不但减少不必要的广告费用,更提升广告的转换率较以往高达2~4倍。
各位看官,看到这儿,你认为他们花了很多时间、金钱和投资才达成吗?事实上,他们所做的仅仅是确立要解决的问题,并且即刻开始着手进行。
大数据营销不会消失,拿着旧地图,永远都找不到新大陆。因此,不管如何,没有数据的企业,就从想解决的问题开始搜集关键数据;拥有数据的企业,要避免过多不必要的技术成本支出,就如同你开始使用POS、ERP系统一样,找到合适的数据软件,开启你的新地图。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21