根据以往的培训和招聘经验,个人把游戏数据分析师分为3个层次:
“入门篇”主要把“产品健康度”监控相关的指标(描述性指标,告诉我们是什么)做一个系统的梳理,希望能够帮助刚刚入行或准备入行的朋友,快速熟悉游戏运营分析相关的指标含义及应用场景;
关于渠道优化、运营活动分析、流失分析、用户行为分析等具体案例分析会在“进阶篇”中跟大家分享;
在这里还是要重申一个观点:
1、数据分析的本质是一种意识,一种以客观事实为导向进行产品管理和客户管理的意识;
2、数据分析师本质上是一个产品分析师,只是在分析的过程中从数据的角度进行切入而已;
3、数据分析的价值在于数据应用,没有业务理解和对各部门作业流程的详细了解,是无法对数据作出分析和解释的;不熟悉业务的数据分析师只能称为“数据取数员";
正文:
对移动游戏数据这块, 我一般喜欢用经典的“水池图”来做说明;
作为CP,无论我们从什么角度做数据分析,最终还是希望能够帮助我们更好的实现最终目的:赚到更多的¥
从一个庸俗易懂的公式出发:
Revenue = AU * PUR *ARPPU
统计周期内的收入流水 = 统计周期内的活跃用户规模 * 活跃用户付费比例 * 平均每付费用户付费金额;
因此,我们要做的事情是:“最大化活跃用户规模,并在此规模之上最大化用户付费转化及付费强度”.
【最大化活跃用户规模】:如果我们把当前的活跃用户看做一个水池,要想提升水池内的含水量,我们可以有几种做法:
1.开源:让更多的水注入,导入更多用户;通过市场推广:
2.节流, 减少水池的出水量,降低用户流失;
【最大化用户付费转化及付费强度】:在维持水池水量的同时,我们可以通过各种养殖和捕捞的方式(游戏内的消费埋点、促销、充值活动等)打到更多的鱼;
当然,价值挖掘 和 用户规模的维护 并不是完全割裂开的,过度的追求高ARPPU也有可能导致用户的流失增加;这是一个相辅相成的过程;
综上所述,移动游戏数据分析指标可以分解为3个模块:
1、市场推广相关指标(包括:激活、上线、各节点转化率、成本指标、渠道质量等),它的任务是帮助我们进行“渠道优化”和“产品优化”,最小化用户获取成本,实现更多的新增导入;
2、用户活跃 & 留存相关指标(包括:DAU\MAU、AT(日均使用时长)、日、周、月留存、回归率等),它的任务是帮助我们在宏观数据表现层面,快速判断产品存在的问题,并对运营活动及产品改进给予“方向性”指导;
3、用户付费相关指标(包括:LTV、PUR(活跃用户付费比)、ARPPU(每付费用户付费强度)、充值结构、充值时段等),它的任务也是帮助我们在宏观数据表现层面明确产品盈利能力,并对运营活动及产品改进给予“方向性”指导。(文章来源:CDA数据分析师)
后面的文章会分别从上述3个方向对数据分析相关指标做进一步详解;
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21