==========在做进一步讲解之前,依旧先对活跃用户进行定义===================
AU(Active Users)活跃用户:统计周期内,登录过游戏的用户数;根据统计周期不同又划分为DAU(日活跃用户),WAU(周活跃用户),MAU(月活跃用户);
备注:入门篇中所定义的“用户”均以“账号”进行衡量;账号:游戏账号库中的唯一标识,在单款游戏中全局唯一;
==========================================================
仍然从应收的公式进行推导 Revenue = AU * PUR * ARPPU;在活跃用户规模固定的前提下,PUR 和 ARPPU 是衡量游戏盈利能力最基础的2个指标;
国内做游戏数据分析的时候 ARPPU 和 ARPU 经常被混在一起,这里为了严谨,单独把这2个指标拿出来对比一下;
ARPU(Average Revenue Per User) 平均每用户收入
定义:统计周期内,活跃用户对游戏产生的平均收入;
公式: ARPU = Revenue / AU
ARPPU (Average Revenue Per Paying User) 平均每付费用户收入
定义:统计周期内,付费用户对游戏产生的平均收入;
公式:ARPPU = Revenue / APA
PUR(Pay User Rate)付费比率
定义:统计周期内,付费账号数占活跃账号数的比例;一般以自然月或自然周为单位进行统计;
公式:PUR = APA / AU;
APA(Active Payment Account)活跃付费账号数
定义:统计周期内,成功付费的账号数(排重统计);
公式:APA = AU * PUR;
拓展应用:
从公式的推导可以看出,实际上 ARPU = ARPPU * PUR;目前国内游戏数据做数据分析时所说的“ARPU”实际上是ARPPU,即平均每付费用户收入;
之所以将 ARPU 再拆解为 PUR 和 ARPPU,主要是因为 ARPU是对产品盈利能力的综合评价,为了更好的我们做决策,将付费指标拆解为 PUR(广度,更多的人付费) 和 ARPPU(深度,付更多的钱) 两个维度;
基于上诉原则,在做充值相关分析的时候,还可以对PUR 和 ARPPU 做进一步拆解,比如新老用户的 PUR 和 ARPPU,对 APA 的付费强度(统计周期内充值金额)进行分段统计,观察APA的结构,如大R占比,贡献率、小额充值的比重等;
在移动游戏数据分析领域,特别是渠道商在判断产品质量的时候,大家还会经常听到一个指标 LTV
LTV(Lift Time Value)生命周期价值
定义:平均一个账号在其生命周期内(第一次登录游戏到最后一次登录游戏),为该游戏创造的收入总计;
公式:LTV_N = 统计周期内,一批新增用户在其首次登入后N天内产生的累计充值 / NU(New Users);
应用场景:手机游戏数据分析中的发行指标,用于衡量渠道导入用户的回本周期,LTV_N>CPA(登录)
从LTV的定义上可以看出,CP可以通过不同渠道导入用户的LTV_N 与 导入成本(CPL)进行比较,用于计算不同媒体投放的回本率(这个在市场推广篇已经提到);另外,渠道商也可以通过这个指标和联运资源的成本对比,迅速判断一款产品是否值得投入联运资源;
由于LTV是基于新增用户进行计算的,因此受大R影响比较严重。
因此,在观察产品LTV数据的时候,通常情况下会选取一段时间的数据进行观察;在汇总计算时,如下图所示,计算LTV_N 时只抽取时间跨度足够的样本;
如,统计周期选择 4-10至4-19,LTV_4 仅通过 4-10 至 4-16的数据进行计算,因为 4-17至4-19 三天的新增账号还没有第4天的数据;
另外,由于受每日新增用户的质量影响较大,有可能出现LTV_N+1 小于 LTV_N的情况,因此要观察 LTV_N时,统计周期至少选择 N +14 天以上,保证每个指标都有14天以上的样本进行计算;
本文提及的收入指标主要是用于描述产品宏观数据,关于结合游戏内的其他数据做分析(包括IB分析、消费分析、首充分析等)以帮助我们制定相应的运营活动和版本计划,这部分会在 进阶篇 的案例中详细说明.(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26