零售企业如何让大数据开花结果_数据分析师考试
互联网时代的到来,改变了整个消费市场,消费者的消费习惯也呈现出个性化、多样化的趋势,零售商也开始学习互联网思维,以消费者的需求为中心。就是在这样的背景下,大数据“火起来”了。要了解消费者的需求,就需要从消费者的习惯、兴趣、消费能力等行为中发现商机,大数据就是对这些行为的捕捉,大数据搜集的信息正是构成消费者图像描绘的要素。然而,无论是专业的大数据分析企业,还是零售商,它们对大数据的理解只停留在最浅显的技术表面,而对于大数据与零售业务的结合而是一知半解。
现状:很热 也很“浮躁”
传统零售企业与互联网企业联手,真正的意图都是要搭乘大数据快车。
邹东生介绍,近两年来,很多机构与企业都来找数据分析专业委员会合作,并且在日常的工作中,也经常遇到很多大小不一的企业在谈论、运用大数据。
大数据在零售行业也很“吃香”。近日,背靠腾讯的大众点评和百盛集团达成合作,用点评的2亿用户资源为线下商家导流;另外,阿里巴巴集团也启动了银泰商业的转型,阿里将利用其强大的消费者数据库,让实体商业从“坐商”转变为“行商”。传统零售企业与互联网企业联手,真正的意图都是要搭乘大数据快车。
但正是在这火热的市场中,也出现了“浮躁”的火苗。
身为数据分析专业委员会会长的邹东生每天都在与大数据打交道,近两年来,随着互联网时代的到来,他深刻体会到大数据的“火热”,因此,他带领自己的团队开始寻找一些成功案例,欲将其经验在行业内推广。然而,令人意想不到的是,邹东生找了很多机构,最终却并没有找到令他“感兴趣”的实例。这个结果让邹东生认识到,“大数据是很热,但是落地的项目、落地的案例还不多,大数据也很浮躁。”
邹东生介绍,社会上关于大数据的会议很多,诸如政府举办的会议,企业举办的会议,还有一些地方上的联盟举办的会议,形形色色。但是这些会议很多不是真正的分析人员——真正给企业带来价值的人组织的,而是技术流的人组织的。“(他们)在会议上讨论什么是分布式计算,平台、数据化的云、存储,动不动就是几百万元、几千万元甚至上亿元投资的产品,好像大数据是用不起的东西,是一个需要花很多钱才能构建的东西。”
但事实上,大数据对于企业来说真正的价值是与业务的结合,是落地与应用。并且,这种落地也并非完全依靠大量的资金来实现。
价值:将数据转化为业务
帮助企业赚钱,使企业平稳地有显见性地应用,这才是大数据带来的真实东西。
运用:先储备应用小数据
很多企业已经拥有自己的小数据,企业可以先从自己搜集的数据分析开始,一步步地接入大数据。
的确,大数据的落地很重要,但是零售企业应该如何实现大数据的落地呢?“对于企业来说,大数据其实并不遥远,事实上,很多企业已经拥有自己的小数据,企业可以先从自己搜集的数据分析开始,一步步地接入大数据。”邹东生认为。
邹东生介绍,很多敏感行业,尤其是零售行业拥有很多自己的内部存储,包括商品数据、消费者数据、供应商数据以及相互间的关联数据等,然而传统零售业企业并未充分利用这些数据。“很多零售商自己的小数据还没有用起来,小数据都能起到立竿见影的效果,如果不用,谈何大数据,谈何互联网+?”
因此,邹东生认为,数据分析引入得越早,其价值越能得以凸显,更何况将来引入大数据建设时,如果没有分析先导,构建数据平台时就无法理解这些数据,也无法根据数据建立企业决策模型。
银联智惠联合创始人龙凯也表示,企业应尽快把数据的价值发挥出来,在目前“诸侯割据”的阶段,应该先把自己的数据用起来,挖掘起来,把负债变成资产,把数据相关的人员储备起来,做好一切的准备。而如果等待数据价值真正爆发的时候,再去准备就晚了。
周庭锐在日常工作中也遇到了沈志勇提到的问题。周庭锐举例说,一个服装企业,拥有十万笔生产的数据以及铺装版型,但是这些数据都写在表格里,版型都是画出来的,周庭锐不得不做一个程序帮企业整理、清洁数据。“像这样的数据清洁是中国走上真正大数据应用的最大障碍。”
尽管目前很多行业都已经认识到大数据的重要性,但是却并没有有效地普及,周庭锐认为其中有三方面原因。一是投入很大;二是产出变现的疑虑;三是从无到有的可行性问题。“目前很多大数据应用模型都太"高大上",但事实上,大数据不是这样的,它要配备到很多中小企业才可以,不能太难太贵。企业也可以借助很多免费工具,比如PC平台。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21