大数据落地必须与行业应用结合_数据分析师考试
大数据应用并非遥不可及,而是已经渗透到人们工作、生活的方方面面。
从优势领域突破
IDC预测,中国的大数据市场从2012年到2016年将增长5倍,政府、电信、银行将是最先使用大数据工具的行业。大数据的价值主要体现在以下几方面:提升企业的决策效率,改进业务流程,提升用户体验和企业的业务创新能力,提高企业的抗风险能力。目前,在亚太地区,大数据的应用还主要以结构化和半结构化数据分析为主,非结构化数据的量虽然很大,但是目前其应用需求还没有兴起。
用户采用大数据工具之前,要注意以下几个问题:从自己有竞争优势的应用领域入手;制定大数据战略时要综合考虑多方面的问题,比如决策层的支持力度、业务流程、数据质量、IT基础架构等;由于专业大数据技术人员数量不足,企业可以考虑采用一些成熟的商业软件;大数据应用不仅仅包括分析型应用,还包括信息访问型、交易型应用等。
更高性能 更低成本
在大数据方面,惠普有两大利器Autonomy和Vertica。惠普通过收购这两家公司获得了大数据分析工具,并与惠普自己的硬件相结合,为用户提供整合的大数据解决方案。Autonomy主要用于非结构化数据的识别与搜索,而Vertica主要用于结构化数据的在线实时分析。两个产品虽然有小部分重合,但更多的是互补关系。
1月15日,惠普在北京正式发布了HP Vertica Analytics Platform 6.1。惠普公司Vertica市场营销副总裁Chris Selland表示:“HP Vertica Analytics Platform 6.1是专为大数据设计的高性能数据分析平台,它具有极高的数据分析性能,查询速度比传统的关系型数据库快50~1000倍;它还具有大规模扩展能力,可以无限量添加行业标准服务器;它采用开放式架构,并内置Hadoop、R语言以及一系列ETL和业务情报工具;它基于优化的数据存储平台,利用压缩技术可以存储更多的数据。”
HP Vertica Analytics Platform 6.1新增了数据管理选择,通过Hadoop Distributed File System(HDFS)连接器来优化大数据。新的HDFS连接器的数据加载速度比HP Vertica Analytics Platform 6.0中的前一代连接器快4倍以上。这一改进确保HP Vertica Analytics Platform 6.1能以简单、可扩展的方式进行高性能数据分析。“目前,Vertica的数据分析平台在全球有上千个用户,分布在30~40个行业中。”Chris Selland介绍说,“Vertica产品的价格只有竞争对手的1/3,但是处理性能提高了数百倍。”
大数据应用难落地还有一个重要因素,就是缺少专业技术人员。Gartner的研究显示,到2015年全球需要440万大数据专业人员,而人才缺口达2/3。为了培养更多的大数据人才,惠普推出了Vertica认证服务,旨在提高HP Vertica系统管理员、数据库分析员和应用开发人员的专业技能。
助力企业转型
大数据应用若想落地,就必须与行业用户的需求相结合。中国惠普有限公司企业服务集团首席技术官王纪奎表示:“用户在决定采用大数据分析工具之前,应该先搞清楚几个问题,比如数据从哪里来,数据的质量如何,数据可以做什么用,数据的价值如何等。大数据分析应用与企业的供应链分析、网络分析、业务系统分析等之间有着千丝万缕的联系。此外,企业还要考量自己的人力、财力等情况,看是否能够应付大数据分析之所需。”
惠普已经推出了针对电信行业用户的分析服务,并将它与惠普的IT基础架构解决方案打包提供给用户。惠普是许多电信运营商的IT基础设施以及应用系统的供应商。因此,惠普对电信运营商的业务流程十分熟悉,并且知道从哪里获取数据以及如何对这些数据进行整合和分析,从而为电信运营商提供更多的附加价值。“针对电信运营商,我们可以提供战略规划、数据质量管理、数据分析服务等。”王纪奎举例说,“2012年,我们曾经帮助国内某运营商将传统业务与电子商务等新兴业务进行整合,并将计费、CRM、商业智能等应用进行有效结合,还提供了数据管理和业务流程设计服务,从而帮助该运营商成功实现业务转型,”
为了帮助用户更好地开展大数据应用,惠普还为用户设计了信息优化转型体验研讨会,通过与用户的面对面交流,进一步了解用户的实际需求以及数据使用情况,明确业务目标,制定管理和利用信息的策略以及执行路线图等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31