抗衡互联网冲击 购物中心要玩转大数据_数据分析师考试
大数据、云计算、互联网……这些虚拟空间的名词正在跟实体产业融合,互联网与传统行业之间的界限越来越模糊,飞凡、喵街、大众点评加上不计其数的O2O产品让实体商业变得越来越好玩,人们在虚虚实实之间享受着“互联网+”带来的方便、经济和愉悦感。
与此同时,还有一大批实体商业正在忙碌地编织着适合自己的互联网。大型的购物中心开始铺设免费Wi-Fi、导入Beacon微定位技术、建设在线商城、开展朋友圈营销……不亦乐乎地为迈进“互联网+”新时代准备着。
智慧商业,过去只存在于人们唠嗑吹牛皮里的生活场景,真的实现了。
智慧来源于数据
购物中心作为人们娱乐、休闲的场所,为什么不长“情”商,长“智”商?其实目的很简单,智慧能够帮助购物中心降低经营成本、提高销量。
问题一:智慧从哪获取?
人类智慧的来源主要是从书本,以及在社会经历中获取信息,经过大脑处理分析、总结而来,互联网智慧也是同样道理,它用“0和1”将人类的行为转化成数据,进行分类处理,再由人进行分析、形成具象的画面,帮助人类营造充满想象力的生活,换句话说,智慧商业需要大数据才能体现价值。
问题二:智慧怎么帮助购物中心达到目的?
没有大数据之前,购物中心在分析消费者习惯、商户需求、制定活动促销策略时,要么凭借多年经验、要么费时费钱的做现场调研,按照一个相对武断的结果,对购物中心发展进行指导。这其中产生的试错成本、人力成本和时间成本是不可估量的。
如果有了大数据,购物中心提高“智商”之后,这些成本可以降到最低。
举个例子,以玩转大数据出名的美国百货公司梅西百货,会根据消费者的购物路线、每个店的停留时间描绘出个体的重点购物区域,对他们进行个体区分,为企业在展台布置、展品摆放等方面提供很多信息,从而帮助企业有针对性的开展促销来提升其销量。
此外,梅西APP的智能试衣间、在线支付、图像搜索等依托大数据建设的智能购物体验也帮助它俘获了不少消费者的心,于是,在国内百货业跌入冰点发展的时期,梅西百货的净利润增长还能保持在20%以上。
也就是说,已经被互联网改变生活方式的消费者,需要“智”取。
梅西百货的大数据运营模式,如今在中国的购物中心身上一样可以实现,而且会很快。飞凡、喵街等购物中心电商开放平台的推出,能够更好地帮助购物中心以轻姿态构建大数据。
以飞凡电商开放平台为例,它目前的大数据处理能力可以帮助购物中心实现数据可视化,提供分析报表、消费者画像等,进而指导购物中心针对不同群体发起实时的新品和优惠推送。
同时,飞凡大数据还能帮助购物中心针对不同商户进行客流、销售和物业管理等方面的分析,有效调整招商策略、定价策略、活动策略和服务策略等,通过数据采集处理、数据挖掘分析等个性化解决方案,构建智慧商业生态。
智慧要懂得开放
不过,在购物中心是否要和外部平台合作,共同打造智慧商业生态的问题上,业内也有不同的声音。有人认为,如果购物中心将数据开放,很有可能被电商“绑架”,失去线下优势,所以,一些规模实力强劲的购物中心为了避免与电商合作,沦为仓库和配送站的风险,倾向于自己建设封闭性的平台。
购物中心的这种做法无可厚非,但自建平台需要投入大量的资金、人员、设备等硬性成本,它跟建造一个APP、开通一个微信账号的概念不一样,智慧商业是一个生态系统,相当于购物中心要重新建造一个相同量级的互联网电商。
但罗马不是一天建成的。
在快速迭代的互联网环境下,市场和竞争者不会给你太多时间去闭门造车,所以,购物中心嫁接外围资源建设互联网系统,是能够较快融入“互联网+”,推进智慧商业的最好办法。更有利的是,与电商合作后,购物中心还可以共享电商平台的互联网资源,例如庞大的会员数量、强大的互联网技术。
飞凡拥有腾讯、百度和万达的庞大资源,还有完善的会员管理体系和积分联盟,未来都可以共享给合作的购物中心。
这些资源上的“福利”,解决了购物中心客源不足、提袋率不高、会员不活跃的问题,也是盘活购物中心大数据系统的重要手段。
互联网是一个以开放、共享为特征的信息化革命的全新时代,因此,带上互联网思维与飞凡等开放平台进行大数据合作,是购物中心智慧商业转型的明智选择。更重要的是,飞凡是基于万达实体商业运营经验,从线下长起来的,它不做单纯的电商,而是作为线下购物的“智慧工具”,以用户而非客户的角度,为购物中心提供大数据支持,更懂得实体商业需要什么。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21