大数据给健康产业带来哪些变革_数据分析师考试
大数据能够更加科学地论证药物使用的效果,为医疗政策指导方向。
2012年,李兰娟曾经带领团队做了一个跟乙肝传染率相关的课题,采集了浙江1000人次的体检数据样本。通过分析发现:当年20岁(1992年出生)以上的样本,乙肝感染率在8%-10%;而20岁以下的样本中,乙肝感染率小于1.5%。
为什么只相差一岁,乙肝感染率就有那么大的差距?
1992年这一年,是个关键词。1992年,卫生部将乙肝疫苗纳入计划免疫管理。通过大数据技术分析,李兰娟团队验证了药物的有效性,这样的分析结果,将给国家制定公共卫生政策,带来科学的指导。
“如果我国继续保持对新生儿进行乙肝疫苗的全面接种,同时成年人也尽快接种乙肝疫苗,那么在十年后,中国将摆脱肝炎大国的帽子。”李兰娟说。
开发大数据预测疾病
有了大数据的分析,“看医生”模式正在转变为“被医生看着”——你的可穿戴设备能够做到24小时给你“做体检”,这种全数据模式成本低,效率却很高,几乎所有人都可以用。
“精准医疗的长期目标,是每个人的健康管理。” 接下去,李兰娟团队将在浙江创建一个人数规模超过100万的志愿者队列,他们愿意共享他们的基因数据、生物样本、生活信息以及所有的电子健康信息。
这是一个融合参与者、有责任的数据共享以及隐私保护的新型研究模型。基于这份健康大数据,浙大一院团队将能够做一系列新研究,比如药物基因组学研究,医生可以更准确地为每个病人开出合适的药物和合适的剂量;比如为病人设定新的治疗和预防目标。
世界医疗产业最发达的美国,在医疗创业领域冒出了许多基于大数据,做疾病预防方面的高科技产品——
美国人Anmol Madan和团队创立了一个公司,专注研究通过手机的数据分析,预测机主的疾病。
他们对实验参与者手机超过32万小时的数据进行收集分析后,最终能够对人们的手机建模,来预测感冒、精神疾病等等。比如,当人抑郁时,通常就能够在与人交流中被看出变化,日常数据分析就能够捕捉这些变化。在测试中,这个应用能够正确判断60%~90%人们日常的生理症状和普通呼吸情况,同时把这些变化发通知给机主本人,未来还能发送给朋友或家人。
深度开发大数据,预测疾病,还可能大幅降低医疗保健的费用。麦肯锡全球研究院报告,如果美国医疗保健行业对大数据进行有效利用,就能把成本降低8%左右,从而每年创造出3000亿美元的价值。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22