分组聚合(group by)顾名思义就是分2步:
groupby()
对某列进行分组agg()
函数里应用聚合函数计算结果,如sum()、mean()、count()、max()、min()
等,用于对每个分组进行聚合计算。import pandas as pd
import numpy as np
import random
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b','a', 'b'],
'B': ['L', 'L', 'M', 'N','M', 'M'],
'C': [107, 177, 139, 3, 52, 38],
'D': [22, 59, 38, 50, 60, 82]})
df
A | B | C | D | |
---|---|---|---|---|
0 | a | L | 107 | 22 |
1 | b | L | 177 | 59 |
2 | a | M | 139 | 38 |
3 | b | N | 3 | 50 |
4 | a | M | 52 | 60 |
5 | b | M | 38 | 82 |
单列分组
① 对单列分组后应用sum
聚合函数
df.groupby('A').sum()
C | D | |
---|---|---|
A | ||
a | 298 | 120 |
b | 218 | 191 |
② 对单列分组后应用单个指定的聚合函数
df.groupby('A').agg({'C': 'min'}).rename(columns={'C': 'C_min'})
C_min | |
---|---|
A | |
a | 52 |
b | 3 |
③ 对单列分组后应用多个指定的聚合函数
df.groupby(['A']).agg({'C':'max','D':'min'}).rename(columns={'C':'C_max','D':'D_min'})
C_max | D_min | |
---|---|---|
A | ||
a | 139 | 22 |
b | 177 | 50 |
两列分组
① 对多列分组后应用sum
聚合函数:
df.groupby(['A', 'B']).sum()
C | D | ||
---|---|---|---|
A | B | ||
a | L | 107 | 22 |
M | 191 | 98 | |
b | L | 177 | 59 |
M | 38 | 82 | |
N | 3 | 50 |
② 对两列进行group
后,都应用max
聚合函数
df.groupby(['A','B']).agg({'C':'max'}).rename(columns={'C': 'C_max'})
C_max | ||
---|---|---|
A | B | |
a | L | 107 |
M | 139 | |
b | L | 177 |
M | 38 | |
N | 3 |
③ 对两列进行分组group
后,分别应用max
、min
聚合函数
df.groupby(['A','B']).agg({'C':'max','D':'min'}).rename(columns={'C':'C_max','D':'D_min'})
C_max | D_min | ||
---|---|---|---|
A | B | ||
a | L | 107 | 22 |
M | 139 | 38 | |
b | L | 177 | 59 |
M | 38 | 82 | |
N | 3 | 50 |
补充1: 应用自定义的聚合函数
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b','a', 'b'],
'B': ['L', 'L', 'M', 'N','M', 'M'],
'C': [107, 177, 139, 3, 52, 38],
'D': [22, 59, 38, 50, 60, 82]})
df
A | B | C | D | |
---|---|---|---|---|
0 | a | L | 107 | 22 |
1 | b | L | 177 | 59 |
2 | a | M | 139 | 38 |
3 | b | N | 3 | 50 |
4 | a | M | 52 | 60 |
5 | b | M | 38 | 82 |
# 使用自定义的聚合函数计算每个分组的最大值和最小值
def custom_agg(x):
return x.max() - x.min()
result = df[['B','C']].groupby('B').agg({'C': custom_agg})
result
C | |
---|---|
B | |
L | 70 |
M | 101 |
N | 0 |
补充2: 开窗函数(类似于SQL里面的over partition by
):
使用transform函数计算每个分组的均值
# 使用transform函数计算每个分组的均值
df['B_C_std'] = df[['B','C']].groupby('B')['C'].transform('mean')
df
A | B | C | D | B_C_std | |
---|---|---|---|---|---|
0 | a | L | 107 | 22 | 142.000000 |
1 | b | L | 177 | 59 | 142.000000 |
2 | a | M | 139 | 38 | 76.333333 |
3 | b | N | 3 | 50 | 3.000000 |
4 | a | M | 52 | 60 | 76.333333 |
5 | b | M | 38 | 82 | 76.333333 |
补充3: 分组聚合拼接字符串 pandas实现类似 group_concat 功能
假设有这样一个数据:
df = pd.DataFrame({
'姓名': ['张三', '张三', '张三', '李四', '李四', '李四'],
'科目': ['语文', '数学', '英语', '语文', '数学', '英语']
})
df
姓名 | 科目 | |
---|---|---|
0 | 张三 | 语文 |
1 | 张三 | 数学 |
2 | 张三 | 英语 |
3 | 李四 | 语文 |
4 | 李四 | 数学 |
5 | 李四 | 英语 |
补充:按某列分组,将另一列文本拼接合并
按名称分组,把每个人的科目拼接到一个字符串:
# 对整个group对象中的所有列应用join 连接元素
(df.astype(str)# 先将数据全转为字符
.groupby('姓名')# 分组
.agg(lambda x : ','.join(x)))[['科目']]# join 连接元素
科目 | |
---|---|
姓名 | |
张三 | 语文,数学,英语 |
李四 | 语文,数学,英语 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13