SPSS中如何对数据文件结构进行重组分析_数据分析师考试
不同的分析方法需要不同的数据文件结构,当现有的数据文件结构与将要进行分析所要求的数据结构不一致时,我们需要进行数据文件结构的重组,一般来说数据文件的结构分析为横向和纵向两种结构。
横向结构
横向结构的数据将一个变量组中的不同分类分别作为不同的变量,例如将A,B,C作用下的数值分别作为一个变量进行保存,每一个组是一个观测量,如图:
纵向结构
纵向结构的数据将一个变量组中的不同分类分别作为不同的观测量,例如将A,B,C组作用下的数值作为一个观测量,如图:
数据重组方式的选择
在菜单栏中一次选择“数据”|“重组”命令,打开如下所示“重组数据向导”对话框。
该对话框提供了三种数据重组方式,分别是“将选定变量组重组为个案”、“将选定个案重组为变量”和“转置所有数据”,用户可以根据现有数据的组合方式和将要进行的分析来选择相应的数据重组方式。
由变量组到观测量组的重组
变量组到观测量组的重组将会使数据由横向格式转换为纵向格式,首先打开横向格式保存的数据文件。
1)选择变量组个数
在“重组数据向导”对话框中选择“选定变量组重组为个案”单选按钮,单击“下一步”按钮,弹出下图对话框“重组数据向导-第二步(共7步)”对话框。
在此对话框中选择要重组的变量组个数。这里只有一个变量组(A,B,C),选择“一个”单选按钮。
2)选择要重组的变量
单击“下一步”按钮,弹出如下的“重组数据向导-第三步”对话框。
(1)“个案组标识”选项组 该选项组用于设置对观测记录的便是变量,在下拉框中有3个选项:
使用个案号,选择此项系统会出现“名称”输入框和“标签”列表,用户可以设置重组后序号变量的变量名和变量标签。
使用选定变量,选择此项系统会出现一个右箭头按钮和“变量”列表,选择标识变量,单击右箭头按钮将其选入“变量”列表即可。
无,则表示不适用标识变量。
(2)“要转置的变量”选项组 该选项组用于设置需要进行转置的变量组。“目标变量”下拉框用于指定要进行重组的变量组。指定完成后,选择相应变量,单击右箭头按钮将其选入“目标变量”列表,组成转置的变量组。
(3)“固定变量”列表 如果用户不希望一个变量参加重组,只需要选择该变量,单击右箭头按钮将其选入“固定变量”列表即可。
本例中将A,B,C变量选入“要转置的变量”列表,在“目标变量”后输入框输入“D”。
3)选择索引变量的个数
单击“下一步”按钮,弹出如下“重组数据向导--第四步”对话框
该对话框用于设置重组后生成的索引变量的个数,一个或者是多个,也可以选择无,标识把索引信息保存在某个要转置重组的变量中,不生成索引变量。本例选择创建“一个”索引变量。
4)设置索引变量的参数
继续单击“下一步”,弹出如下菜单“重组数据向导--第5步”对话框。
索引值是什么类型选项组:该选项组用于设置索引值的类型,用户可以选择有序数组或变量作为索引值得类型。
编辑索引变量的名称和标签栏:在该栏中设置索引变量的变量名和变量标签。
本例,设置索引变量的名称为“品类”,索引值为变量名,即A,B,C
5)其他参数的设置
单击“下一步”,弹出“重组数据向导---第6步”对话框。该对话框中有三个选项组设置。
(1)“处理未选定的变量”选项组 该选项组用于设置对用户未选定变量的处理方式,如选择“从数据文件中去掉变量”,系统会敬爱那个这一部分变量删除;如选择“作为固定变量保存和处理”,系统会将这一部分变量作为固定变量处理。
(2)“所有已转置变量中的缺失值或空白值”选项组 该选项组用于设置对要转置变量中的缺失值和空白值的处理方式,“在新文件中创建个案”,标识系统将为这些变量单独生成观测记录;选择“废弃数据”,则这一部分观测值将被删除。
(3)“个案计数变量”选项组 该选项组用于设置是否生成计数变量,勾选“计算有当前数据中的个案创建的新个案的数量”复选框,表示生成计数变量,同时将激活“名称”和“标签”输入框,用户可以在其中输入计数变量的变量名和变量标签,本例中,该步保持默认设置即可。
6)完成数据重组
单击“下一步”,弹出“重组数据向导---完成”对话框。
这里可选择是否立即进行数据重组,如选择“将本向导生成的已经黏贴到语句窗口”单选按钮,系统会将相应的命令语句粘贴值语句窗口。
设置完成后,单击“完成”按钮即可进行数据重组操作。重组后的数据文件如下,横向格式数据文件转换成了纵向格式的数据文件。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22