零售业如何通过数据挖掘VIP顾客的价值_数据分析师考试
会员顾客重要吗?当然重要,看看你身边的零售业或零售品牌们,基本是无一不会员制。你再仔细看看你会发现有的企业只是在模仿,而有的却是在经营会员制。因为大家都把会员制当成稳定销售来源的一种重要渠道了。大家都在攫取顾客的销售价值,而很少有企业通过数据分析去挖掘顾客的附加价值!
我把会员顾客的价值分为销售价值和附加价值。销售价值顾名思义就是会员可以带来的相对稳定的顾客群和稳定的销售额的价值,附加价值就是通过对会员的购买记录进行分析从而创造差异化的管理以及根据分析结果指导决策的价值。本文不谈策略,只谈零售行业如何通过数据分析挖掘会员顾客的价值。
在做会员数据分析之前,有一项非常重要的工作要做,那就是数据清洗。因为会员销售记录中有不少是有问题的数据记录。目前所有的POS和CRM系统都不提供数据清洗的功能。一般来讲有问题的数据体现在两个方面:连续消费的卡(几乎每天都有消费记录,这种卡很可能是网络卡或者是卡在店员手中),单次消费金额异常的卡(每次消费金额都很大,超出普通消费者的购买习惯。这种卡很可能是团购卡或网购卡)。这两种消费应该都不是正常会员的消费数据,并且有时它会左右分析结论,所以要在正式的数据分析之前剔除掉。
一、会员群体的数据分析
会员群体的数据分析,包括两个方面:会员群体基本信息的分析和会员消费价值的分析。
会员基本信息的分析包括会员的性别、年龄段、地域、职业、收入、开卡地属性等。这部分分析主要是看顾客群是否和公司的整体策略相吻合,有无变化的趋势,是否需要调整公司策略等。需要注意的是公司策略变化会影响数据规律的变化,比如调整商品结构或者提高开新卡的条件等。
下面是对某化妆品品牌VIP顾客的部分分析报告:
针对会员顾客消费价值的分析我把它分为三个方面:财富值、消费力和附加值。会员顾客就像我们的个人财富一样,需要我们倍加珍视和呵护。我们不但要分析他们的消费力,还需要挖掘他们的附加值,以便更好的服务于他们。请见下图:
有关财富值中的开卡率等于新会员卡数除以成交顾客数,这项指标和公司的开卡策略有莫大的关系。开卡率太高和太低都有问题,开卡率太高日后维护成本会增加,开卡率太低不利于财富值的增加。不同的企业会有不同的开卡率,这个值需要企业不断地分析和调整策略,来达到一个平衡。一个企业的会员总数会不断地累积变大,其中必然会产生很多没有价值的会员卡,如果不加以区分会浪费企业的管理资源,所以很多企业提出了有效VIP卡的概念。零售品牌一般定义为滚动12个月内有消费或达到指定的消费金额的顾客为有效顾客,对于零售百货和超市的时间点可以相应修改为6个月和3个月。
和有效VIP卡相对应的是附加值中的流失率,如果一个零售品牌2010年6月底的有效VIP卡为6万张,而截止到2011年6月底有4万个顾客回来消费过,那12个月内的流失率就是33%。这个流失率是一个滚动概念,每个月都可以进行滚动分析,需要注意的是滚动的时间段务必统一。
回购频率是指在一段时间内顾客平均回来购买的次数,而平均回头购买天数是指顾客平均多少天会来购买一次(注意这是回来购买而不是只是回来,因为回来而没有购买的数据没办法被统计,未来的科技也许会支持这个指标的分析)。这两个指标是相辅相成的,每个零售企业都希望自己的会员顾客经常回来,最好是天天回头,实际上这些要求都是不现实。所以你会见到很多企业的促销员天天去骚扰顾客,最后顾客不堪骚扰而离去。对于一个企业来说天天回头是不现实的,但是我们完全可以一步一步的提高。下图是一个零售企业的这两个指标图(虚拟数据),希望对大家有所启示:
如何利用这张图?企业需要制定对应的策略来逐步提高这两项指标,比如加强沟通,注意沟通技巧,改变促销活动频率等。沟通频率需要和平均购买天数一致,绝对不能随性。大家还可以留意一下大型超市的促销期的长度,有的是10天,有的是12天,还有的是15天,这个值是和上面两个指标相关联的;
二、 会员个体的数据分析
会员个体数据的分析指标和群体分析指标大部分是一致的,也包括消费力和附加值的分析。只是我们更多把分析体现在个体差异和群体分类上。找到个体和群体的差异,制定对应的销售策略。下图是某零售百货部分VIP会员的四象限分级管理图(X轴代表顾客的年回购频率即每年回头购买的次数,越往右代表频率越高。Y轴是表示顾客每次回头购买的平均消费金额,越往上单次消费金额就越高。红色十字线是平均值线)。
如何解读这个图?
1. 一象限是黄金顾客,回购频率和平均购买金额都是高于平均值的,二和四象限是潜力顾客;
2. 一象限一般不需要特别的沟通和维护,他们基本上是公司最忠实的顾客,二象限的顾客需要特别加强沟通频率,四象限的顾客也不需要特别沟通他们回店消费,者是,但是需要店铺内工作做足,提高客单价;
3. 在资源紧张的情况下三象限不需要特别维护,保持不流失的原则沟通即可。
未来的针对会员个体的数据分析方向应该是通过对个体的数据研究来指导企业人性化服务上面,需要我们能够比会员更了解他们自己。那时当顾客走进你的店铺的时候,店员的手上就已经拿到该顾客的购买习惯和偏好了,并且根据顾客的喜好也已经设计了好几套推荐方案。当你脱口而出顾客对服装款式和颜色的喜好时,顾客一定会被你折服的!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23