一篇文章告诉你,该学R还是Python_数据分析师
对于想从事数据行业的人和数据工作者来说,是学习R还是python,哪个工具更实用一直被大家争论。Martijn Theuwissen,DataCamp的教育专家详细比较了这两个工具。
ython和R是统计学中两种最流行的的编程语言,R的功能性主要是统计学家在开发时考虑的(R具有强大的可视化功能),而Python因为易于理解的语法被大家所接受。
在这篇文章中,我们将重点介绍R和Python以及它们在数据科学和统计上地位之间的差异。
关于R的介绍
Ross Ihaka和Robert Gentleman于1995年在S语言中创造了 开源语言R,目的是专注于提供更好和更人性化的方式做数据分析、统计和图形模型的语言。
起初R主要是在学术和研究使用,但近来企业界发现R也很不错。这使得中的R成为企业中使用的全球发展最快的统计语言之一。
R的主要优势是它有一个庞大的社区,通过邮件列表,用户贡献的文档和一个非常活跃的堆栈溢出组提供支持。还有CRAN镜像,一个用户可以很简单地创造的一个包含R包的知识库。这些包有R里面的函数和数据,各地的镜像都是R网站的备份文件,完全一样,用户可以可以选择离你最近的镜像访问最新的技术和功能,而无需从头开发。
如果你是一个有经验的程序员,你可以不会觉得使用R可以提高效率,但是,你可能会发现学习R经常会遇到瓶颈。幸运的是现在的资源很多。
关于Python的介绍
Python是由Guido van Rossem创建于1991年,并强调效率和代码的可读性。希望深入的数据分析或应用统计技术的程序员是Python的主要用户。
当你越需要在工程环境中工作,你会越喜欢Python。它是一种灵活的语言,在处理一些新东西上表现很好,并且注重可读性和简单性,它的学习曲线是比较低的。
和R类似,Python也有包,pypi是一个Python包的仓库,里面有很多别人写好的Python库。
Python也是一个大社区,但它是一个有点比较分散,因为它是一个通用的语言。然而,Python自称他们在数据科学中更占优势地位:预期的增长,更新颖的科学数据应用的起源在这里。
R和Python:数字的比较
在网上可以经常看到比较R和Python人气的数字,虽然这些数字往往就这两种语言是如何在计算机科学的整体生态系统不断发展,但是很难并列进行比较。主要的原因是,R仅在数据科学的环境中使用,而Python作为一种通用语言,被广泛应用于许多领域,如网络的发展。这往往导致排名结果偏向于Python,而且从业者工资会较低。
R如何使用?
R主要用于当数据分析任务需要独立的计算或分析单个服务器。这是探索性的工作,因为R有很多包和随时可用的测试,可以提供提供必要的工具,快速启动和运行的数量庞大几乎任何类型的数据分析。R甚至可以是一个大数据解决方案的一部分。
当开始使用R的时候,最好首先安装RStudio IDE。之后建议你看看下面的流行包:
•dplyr, plyr 和 data.table 可以轻松操作包
•stringr 操作字符串
•zoo做定期和不定期的时间序列工作
•ggvis, lattice, and ggplot2 进行数据可视化
•caret 机器学习
Python如何使用?
如果你的数据分析任务需要使用Web应用程序,或代码的统计数据需要被纳入生产数据库进行集成时你可以使用python,作为一个完全成熟的编程语言,它是实现算法一个伟大的工具。
虽然在过去python包对于数据分析还处于早期阶段,但是这些年已经有了显著改善。使用时需要安装NumPy/ SciPy的(科学计算)和pandas(数据处理),以使Python可用于数据分析。也看看matplotlib,使图形和scikit-learn机器学习。
不同于R,Python有没有明确的非常好的IDE。我们建议你看看Spyder以及IPython网站,看看哪一个最适合你。
R和Python:数据科学行业的表现
如果你看一下最近的民意调查,在数据分析的编程语言方面,R是明显的赢家。
有越来越多的人从研发转向Python。此外,有越来越多的公司使用这两种语言来进行组合。
如果你打算从事数据行业,你用好学会这两种语言。招聘趋势显示这两个技能的需求日益增加,而工资远高于平均水平。
R:优点和缺点
优点
可视化能力强
可视化通常让我们更有效地理解数字本身。R和可视化是绝配。一些必看的可视化软件包是ggplot2,ggvis,googleVis和rCharts。
完善的生态系统
R具有活跃的社区和一个丰富的生态系统。R包在CRAN,Bioconductor的和Github上。您可以通过Rdocumentation搜索所有的R包。
用于数据科学
R由统计学家开发,他们可以通过R代码和包交流想法和概念,你不一定需要有计算机背景。此外企业界也越来越接受R。
缺点
R比较缓慢
R使统计人员的更轻松,但你电脑的运行速度可能很慢。虽然R的体验是缓慢的,但是有多个包来提高的r性能:pqR,renjin,FastR, Riposte 等等。
R不容易深入学习
R学习起来并不容易,特别是如果你要从GUI来进行统计分析。如果你不熟悉它,即使发现包可能会非常耗时。
Python:优点和缺点
优点
IPython Notebook
IPython Notebook使我们更容易使用Python进行数据工作,你可以轻松地与同事共享Notebook,而无需他们安装任何东西。这大大减少了组织代码,输出和注释文件的开销。可以花更多的时间做实际的工作。
通用语言
Python是一种通用的语言,容易和直观。在学习上会比较容易,它可以加快你写一个程序的速度。此外,Python测试框架是一个内置的,这样可以保证你的代码是可重复使用和可靠的。
一个多用途的语言
Python把不同背景的人集合在一起。作为一种常见的、容易理解,大部分程序员都懂的,可以很容易地和统计学家沟通,你可以使用一个简单的工具就把你每一个工作伙伴都整合起来。
缺点
可视化
可视化是选择数据分析软件的一个重要的标准。虽然Python有一些不错的可视化库,如Seaborn,Bokeh和Pygal。但相比于R,呈现的结果并不总是那么顺眼。
Python是挑战者
Python对于R来说是一个挑战者,它不提供必不可少的R包。虽然它在追赶,但是还不够。
最终你该学习什么呢:
由你决定!作为一个数据工作者,你需要在工作中选择最适合需要的语言。在学习之前问清楚这些问题可以帮助你:
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10