百万级别数据的分析,使用那种数据库比较好_数据分析师
现在需要做一个数据存储,500w左右的数据,日后每天大约产生5w条左右的数据。想把这些数据存储起来,供日后的数据分析用?使用上面说的三种数据库中的哪中比较好?是否有必要建立集群?
问题描述:
现在需要做一个数据存储,500w左右的数据,日后每天大约产生5w条左右的数据。想把这些数据存储起来,供日后的数据分析用?使用那种数据库比较好?是否有必要建立集群?
个人看法是:从长远角度看,由于单台机器的性能瓶颈,后期肯定要做集群,单纯的做复制最终也无法缓解单台master上读的负担。因此,使用mysql的话会使用cluser。但是了解到mysql的cluser要用好的化还要做负载均衡,而mysql的均衡器是第三方的,无法很好的与mysql整合。使用mongodb的自动分片集群能很好的解决这个问题,而且它的读写性能也快。Hbase提供了大数据存储的解决方案。
回到我问题,最终是要在大数据的基础上做数据分析,虽然mongodb也能与Mapreduce整合,但想必Hbase做这一块会更有优势。
答案:
百万级的数据,无论侧重OLTP还是OLAP,当然就是MySql了。
过亿级的数据,侧重OLTP可以继续Mysql,侧重OLAP,就要分场景考虑了。
实时计算场景:强调实时性,常用于实时性要求较高的地方,可以选择Storm;
批处理计算场景:强调批处理,常用于数据挖掘、分析,可以选择Hadoop;
实时查询场景:强调查询实时响应,常用于把DB里的数据转化索引文件,通过搜索引擎来查询,可以选择solr/elasticsearch;
企业级ODS/EDW/数据集市场景:强调基于关系性数据库的大数据实时分析,常用于业务数据集成,可以选择Greenplum;
数据库系统一般分为两种类型:
一种是面向前台应用的,应用比较简单,但是重吞吐和高并发的OLTP类型;
一种是重计算的,对大数据集进行统计分析的OLAP类型。
传统数据库侧重交易处理,即OLTP,关注的是多用户的同时的双向操作,在保障即时性的要求下,系统通过内存来处理数据的分配、读写等操作,存在IO瓶颈。
OLTP(On-Line Transaction Processing,联机事务处理)系统也称为生产系统,它是事件驱动的、面向应用的,比如电子商务网站的交易系统就是一个典型的OLTP系统。
OLTP的基本特点是:
数据在系统中产生;
基于交易的处理系统(Transaction-Based);
每次交易牵涉的数据量很小;
对响应时间要求非常高;
用户数量非常庞大,主要是操作人员;
数据库的各种操作主要基于索引进行。
分析型数据库是以实时多维分析技术作为基础,即侧重OLAP,对数据进行多角度的模拟和归纳,从而得出数据中所包含的信息和知识。 (文章来源:CDA数据分析师培训官网)
OLAP(On-Line Analytical Processing,联机分析处理)是基于数据仓库的信息分析处理过程,是数据仓库的用户接口部分。OLAP系统是跨部门的、面向主题的,其基本特点是:
本身不产生数据,其基础数据来源于生产系统中的操作数据(OperationalData);
基于查询的分析系统;
复杂查询经常使用多表联结、全表扫描等,牵涉的数据量往往十分庞大;
响应时间与具体查询有很大关系;
用户数量相对较小,其用户主要是业务人员与管理人员;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30