来自伯乐在线
在解释机器学习的基本概念的时候,我发现自己总是回到有限的几幅图中。以下是我认为最有启发性的条目列表。
图1
1、Test and training error:
为什么低训练误差并不总是一件好的事情呢:图1以模型复杂度为变量的测试及训练错误函数。
图2
2. Under and overfitting:
低度拟合或者过度拟合的例子。图2多项式曲线有各种各样的命令M,以红色曲线表示,由绿色曲线适应数据集后生成。
图3
3. Occam’s razor
图3为什么贝叶斯推理可以具体化奥卡姆剃刀原理。这张图给了为什么复杂模型原来是小概率事件这个问题一个基本的直观的解释。水平轴代表了可能的数据集D空间。贝叶斯定理以他们预测的数据出现的程度成比例地反馈模型。这些预测被数据D上归一化概率分布量化。数据的概率给出了一种模型Hi,P(D|Hi)被称作支持Hi模型的证据。一个简单的模型H1仅可以做到一种有限预测,以P(D|H1)展示;一个更加强大的模型H2,举例来说,可以比模型H1拥有更加自由的参数,可以预测更多种类的数据集。这也表明,无论如何,H2在C1域中对数据集的预测做不到像H1那样强大。假设相等的先验概率被分配给这两种模型,之后数据集落在C1区域,不那么强大的模型H1将会是更加合适的模型。
图4
4. Feature combinations:
(1)为什么集体相关的特征单独来看时无关紧要,这也是(2)线性方法可能会失败的原因。从Isabelle Guyon特征提取的幻灯片来看。
图5
5. Irrelevant features:
为什么无关紧要的特征会损害KNN,聚类,以及其它以相似点聚集的方法。左右的图展示了两类数据很好地被分离在纵轴上。右图添加了一条不切题的横轴,它破坏了分组,并且使得许多点成为相反类的近邻。
图6
6. Basis functions
非线性的基础函数是如何使一个低维度的非线性边界的分类问题,转变为一个高维度的线性边界问题。Andrew Moore的支持向量机SVM(Support Vector Machine)教程幻灯片中有:一个单维度的非线性带有输入x的分类问题转化为一个2维的线性可分的z=(x,x^2)问题。
图7
7. Discriminative vs. Generative:
为什么判别式学习比产生式更加简单:图7这两类方法的分类条件的密度举例,有一个单一的输入变量x(左图),连同相应的后验概率(右图)。注意到左侧的分类条件密度p(x|C1)的模式,在左图中以蓝色线条表示,对后验概率没有影响。右图中垂直的绿线展示了x中的决策边界,它给出了最小的误判率。
图8
8. Loss functions:
学习算法可以被视作优化不同的损失函数:图8 应用于支持向量机中的“铰链”错误函数图形,以蓝色线条表示,为了逻辑回归,随着错误函数被因子1/ln(2)重新调整,它通过点(0,1),以红色线条表示。黑色线条表示误分,均方误差以绿色线条表示。
图9
9. Geometry of least squares:
图9带有两个预测的最小二乘回归的N维几何图形。结果向量y正交投影到被输入向量x1和x2所跨越的超平面。投影y^代表了最小二乘预测的向量。
图10
10. Sparsity:
为什么Lasso算法(L1正规化或者拉普拉斯先验)给出了稀疏的解决方案(比如:带更多0的加权向量):图10lasso算法的估算图像(左)以及岭回归算法的估算图像(右)。展示了错误的等值线以及约束函数。分别的,当红色椭圆是最小二乘误差函数的等高线时,实心的蓝色区域是约束区域|β1| + |β2| ≤ t以及β12 + β22 ≤ t2。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10