大数据+机器学习=更人性化的数字营销
大数据,尤其是与客户数据相关的大数据近几年来一直是商家的热议话题。如果你从事的是B2C领域,尤其是零售或电子商务方面的工作,那么你很有可能会以某种形式或方式接触或运用到大数据。
不过,随着新年将至,数字营销者关注点将由大数据转移至“更高质量的”数据和洞察力。通过分析顾客的在线行为真正深入地了解顾客,在帮助品牌提升知名度和影响力的同时,也可帮助营销者通过运用更具有实际意义的数据打造更加个性化的购物体验。
那么,在与数以百万计的顾客交流时,究竟应该如何运用大数据打造让顾客难以忘怀的个性化购物体验呢?
解决这一难题,首先需要依靠大数据来填补商家和消费者之间的鸿沟,这也将成为2016年营销界的热点话题。
大数据助力营销者深入了解客户
市场营销活动直接接触到顾客,并有机会将顾客转化,所以分析、评估和执行这些营销活动尤为重要,商家须不断收集顾客的详细信息。大数据和数据分析相结合,创建顾客资料库能够帮助商家:
深入了解顾客购买行为;预测顾客购买决定;向顾客推荐其感兴趣的商品;最终升顾客线上购物体验。
只有互动才能让商家更多地接触顾客,而与顾客互动的唯一途径便是充分运用大数据。
今年,商家曾遭遇大数据泛滥的困境。商家接收到了海量、各类型的数据,由于处理不当,甚至根本没有能力处理这些数据,而被淹没在了数据洪流之中。因此,今年商家的热议话题之一就是利用顾客智能实现个性化。
而这也是我们能够帮助客户提升他们的顾客的个性化体验的另一方面 ——机器学习。
预测:机器学习将成为2016年的“新秀”
机器学习是在人工智能领域中的一种简单模式识别和计算机学习理论。一般来说,就是通过探寻无法直接看到的模式来解决问题,并利用某种算法基于大数据学习并做出预测。
过去,商家通常依赖于人类智慧和小数据集与顾客接触和互动。2016年,我们可以预见商家将利用数字营销将更大的数据集与机器学习相结合,更深入了解顾客的购买决定并预测其购买行为,从而为顾客提供更为人性化和个性化的购买途径。2016年,关于大数据的讨论将依然围绕多来源、多渠道的数据处理及运用,以便更进一步了解顾客,挽救流失的销售机会及收益。机器学习将为数字营销增添更多的个性化和人性化气息。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21