数据分析师职业规划:数据分析师是企业的贤内助,可帮企业识别市场机会、控制决策风险,保证企业利益的最大化。因此,数据分析工作越来越受到各界的青睐。被《HR管理世界》评为七大赚钱行业之一,也被视为我国21世纪的黄金职业。
在这样的背景下,有些网友想进入到数据分析行业,但对如何规划自己的职业之路比较迷茫。这里我谈谈自己的一些浅显理解,与大家切磋。
这个话题可以分解为三个具体的问题:
1、数据分析有哪些发展方向?
2、数据分析的晋升空间有多大?
3、如何规划数据分析的职业之路?
概括起来,数据分析师的发展方向主要有三个。政府机关、企业和研究机构。
一、方向A:政府机关
主要有两类,一类是计委、经委、统计局等一些经济综合管理部门所设有的调研处、研究室和情报所。统计部门还分别成立了城市调查队与农村调查队,经常开展社会和市场调研工作,为政府的决策提供支持。第二类是商业、粮食、物资、银行等经济主管业务部门会设有信息中心或调研室,从本系统、本部门的业务出发进行专业性调研,提供支持本部门的市场信息。
二、方向B:企业
很多企业有专门的数据分析岗,比如我以前在新浪房产频道做客户分析师;再比如,我有朋友在普天做战略分析师。此外,像宝洁、联想、惠普等很多企业都会有专门的数据分析岗。
那么企业中数据分析岗的职位名称具体有哪些?数据分析岗的需求在不同城市和行业间是如何分布的呢?
1、数据职位名称
有很多啦,按分析层级分,有调查员、分析助理、分析专员、项目经理、研究主管、研究经理、研究总监等;按分析内容分,有投资分析、战略分析、媒介分析、信用分析、网站流量分析、财务分析、客户分析等。
那么,不同城市和行业对数据分析的需求量有多大呢?以智联招聘为例,我在5月初,在智联招聘上输入“分析”这个关键词,得到了不同城市和行业对数据分析岗需求量的不完全统计。
2、不同城市对数据分析岗的需求
数据分析需求前三位的城市依次是:北京、上海和广州。
3、不同行业对数据分析岗的需求
以广州为例,从下表可知,需求前两位的行业分别是计算机软硬件IT行业及电子商务、网络游戏。
尤其是电子商务,由于利用互联网,能够比传统零售业具有更好的数据收集和管理能力,能积累海量的数据,因此更看重从海量数据中挖掘用户偏好和市场机会,所以我们可以看到百度有百度商桥、阿里巴巴有淘宝数据魔方、而亚马逊、京东、当当、卓越网都会大量招聘数据分析师。
为什么我在统计数据分析岗的需求量时,在智联招聘上输入的关键词是“分析”,而不是“数据分析”呢?因为像战略分析、投资分析等岗位虽然没含有“数据”字样,但仍是数据分析岗。这样会产生另一问题,没有包含“分析”字样的数据分析岗就没有包括在我的统计之中了(比如研究总监、调查员等)。所以,以上的统计只是粗略的,实际上的需求量要比这个统计结果大得多。
在企业做数据分析师,你的价值能不能体现,一方面取决于你自己的专业能力,另一方面还要看领导重不重视。有一个网友曾经跟我抱怨说,他在某一个企业做数据分析,他的领导总是让他创新,但是,第一,他拿不到数,他们企业各部门之间的条块分割非常严重,其他部门不愿意给他提供数据支持。第二,领导不给他配人,他们部门就他一个,光做基础数据的整理就经常要加班,根本没有经历再去做深入的研究。为此,他特别苦恼。我给他的建议是,向领导争取权利和资源(获得其他部门数据的权利;壮大数据分析队伍的资源)。如果领导不给,就跳槽。
因此,要去企业做数据分析,需谨慎选择,比如面试时注意面试官问你的问题是否专业、企业承诺给你的发展空间有多大、基础数据搭建的水平如何、向企业里的熟人或师哥师姐询问、或者实在找不到可询问的人,可以到微薄或论坛上提问等等(有条微薄说:现实中人们用真名字说假话;而在微薄上人们用假名字说真话。)
三、方向C:研究机构
第二种方向是去专门的研究机构,比如市场研究公司、咨询公司、证券公司、投资公司、广告公司、研究院等等。
由于这些研究机构是专门以数据分析为业务的,会很重视员工的专业素养的提高,往往能给你提供参与项目和参加培训的机会。通过项目和培训,会高强度地强化你的能力,让你在2、3年的时间里就掌握数据分析的基本流程、方法模型和工具操作。
我在市场研究公司工作了3年,详细说下市场研究公司的情况吧。
我国的市场研究公司突破1500家,可分为国内的调研公司和国际的调研公司,国内的调研公司像新华信、零点、新生代、CTR、华南国际、艾瑞、易观等等,国际的调研公司像埃森哲、尼尔森、益普索、盖洛普、麦肯锡、GFK、 TNS等等。
给大家两个重要的网站,大家可以自己做更详细的了解。
一个是中国市场协会,进入后,点击“会员专区”就可以看到一些市场研究公司的介绍和他们的网址,这里的公司一般规模比较大,以研究为主,一般要求研究生学历,在北京的平均月工资应该在4、5千左右,如果有经验、能力好,会更高些。其他地区会有所差异,做个参考吧。
第二个是3see网,进入后点击“调研公司”可以看到一些公司名录。但是,我个人感觉这里面所收录的公司大都是执行公司,以市场调查为主,例如联合威道、济南城远等,我们之前有过合作。这些公司主要招聘访员,工资可能偏低一些。
在市场研究公司工作了3年左右可能会遇到一些瓶颈。因为,大多数市场研究公司是看数说话,只会数据分析的模型和工具,对客户的业务究竟是如何运营的并不清楚。所以,做了一段时间之后,会有套模板的感觉,所提的建议也是隔靴搔痒。
因此,很多在研究机构工作了3年左右的人会跳槽到甲方,这样有数据、方法、工具和企业的业务相结合,数据分析对企业决策的价值就会发挥得更为充分了。
第二个问题:数据分析的晋升空间。
晋升空间的问题可以从职位晋升、薪酬晋升和发展路径三个方面来理解。
一、职位晋升
职位晋升取决于你的能力达到了哪个层级。一般而言,数据分析师有三个层级:助理数据分析师、数据分析师、高级数据分析师。
如何来评价你处在哪个层级呢?主要看三个方面:业务分析能力、执行管理能力和业内影响力(参考@数据化分析的《数据分析师的层级》)。
1、业务分析能力
按照业务分析的流程,业务分析能力可细化为5项具体的考核指标。
三个层级的数据分析师在这5项细化指标的具体区别见下图。
上面两张图是三个层级在业务分析能力细化指标上的具体表现,那么,如何综合考量它们在业务分析能力上的综合表现呢?可以用层次分析法。
层次分析法的具体操作步骤见后文,这里只给出分析结果。即三个层级的排序向量为:
2、执行管理能力和业内影响力
综合以上三方面指标,数据分析师的职位晋升路径如下图:
二、薪酬晋升
不同的职位,对应着不同薪酬体系。一般来说,在北京,数据分析助理,月薪在2000-4000元左右;数据分析师,月薪在4000-8000元左右;高级数据分析师,月薪在8000元以上。
备注:由于我没有收集到数据分析师薪酬方面的权威统计数据,只能根据自己的从业经历估计出的一个大概的平均水平,比较主观。因为薪酬情况还要看地域差异,看行业发展,看企业实力,所以估计结果不适合普及,只能作为参考。特此声明。
三、发展路径
前面的三个层级更多体现的是能力的提升,是很多数据分析师的必经之路。而到达了高级数据分析师之后,接下来该如何走,则往往有很多选择。看看身边的同事和微薄上的牛人所走的路,我把数据分析师的发展路径归为四种(如有不全欢迎补充),你要选择哪条,需要结合自身的兴趣爱好和资源实力。
职业规划需要行业领域专攻的专家,没有任何一个专家能够擅长所有行业,所以职业规划需要有来自各行各业的专家人士来提供咨询。向阳生涯专家来自各行各业知名企业的高管,具有职场成功经验,为顾客提供服务都是领域内最擅长的专家。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20