发挥大数据在国家治理中的作用
当前大数据正在改变世界,而数据收集和分析则是提升应急管理功能的重要手段。欧美一些国家已经开始把大数据运用到应急管理中,并取得一定成效,当前国内实务界和学术界虽然开始关注大数据的应用,但相关研究还比较缺乏。因此,我国需要在大数据战略、大数据开放政策、大数据在应急管理中具体应用形式等方面做出部署与探索。
其一,制定国家大数据战略,加大对大数据投入。进入21世纪以来,特别是近年来,许多国家重视大数据在公共管理中的应用,并制定了国家级大数据战略。各国的大数据战略表明,“大数据”并不仅仅是一个技术概念,它已经切实成为提高国家治理能力,改进公共管理水平乃至增强国家竞争力的重要因素。目前,广东省已经在我国率先试水大数据战略,并宣布要在近期开放一部分政府数据。这是我国地方政府回应“大数据时代”的具体措施。但是相对于英、美等西方国家和日、韩等亚洲近邻而言,我国还没有形成完善的国家级大数据战略。
其二,制定大数据开放政策,逐步扩大数据共享范围。除了制定大数据国家战略外,还要重视制定配套的数据开放政策,如目前美国政府数据开放网站(data.gov)可供检索的数据集已超过10万项。继美国之后,很多国家也制定政策要求数据开放。可以说,政府数据公开与共享是大数据化改革的核心内容。从各国的趋势看,配合国家大数据战略制定数据开放政策和要求数据共享也是非常必要的。另外,“数据开放”已经成为各国共识,随着国际数据市场的逐步形成,没有符合国际标准的国家级数据公开标准,也就难以建立能与国际市场接轨的数据市场管理标准。“数据开放”已经成为国际竞争力的一环,且欧美等国已抢占先机。所以无论从优化公共管理的角度,还是从增强国家竞争力的角度,抑或是规范数据市场的角度,由中央政府领衔制定国家级数据开放政策是非常必要的。
其三,探索大数据在应急管理领域中具体应用形式。事前准备阶段,政府或其他部门需要为大数据的应用做出准备。在管理和权限设置上,有必要设置“大数据信息官”并赋予其改进组织流程的权限,以推进大数据在部门工作中的落实。在技术升级和设备使用方面,政府或其他部门要明确需要解决的问题,以需求为导向,进行一定设施的准备。事中响应阶段,信息的有效聚合和快速传递是核心环节。政府或其他部门在使用大数据增强信息采集能力的同时,也要进行数据共享,建立统一的数据中心,以便在应急管理过程中提高效率。同时,在应急管理的事中响应阶段,指挥人员、专家技术人员和现场处置人员的联系也至关重要,建立高效的信息共享渠道也是很重要的方面。事后处置和救援阶段,及时了解救援信息和对所获信息的处理最为重要。如果有明确的信号可以让应急处置人员快速了解需要救援的地点和所需救援内容,救援效率便可大幅度提高。大数据在事后处置的应用便是遵循这种逻辑:通过网络或者监控设备,采集需要救援的信息,用算法筛选整合这些信息,并将指令快速传达给应急处置人员,从而提高救援效率。
其四,完善隐私保护政策,注重公共安全和公民隐私之间的平衡。大数据时代,如何对公民个人隐私保护也很重要,最好能在公共安全和公民隐私之间达到平衡。2013年5月,爱德华·斯诺登披露了美国国家安全局自2007年实施的绝密电子监听计划,即“棱镜计划”(prism),允许fbi和nsa对包括微软、雅虎、谷歌、苹果在内的九家it巨头的数据进行监控和挖掘,直接或间接接触大量个人聊天日志、私人数据、语音通信、传输文件和社交网络数据。尽管美国自我标榜“重视个人隐私”,但是公民个人的数据信息没有得到有效保护,引发了对“大数据时代”个人隐私的广泛讨论和关注。技术对个人隐私的威胁已经超出了原有法律框架。如果不对采集的个人信息使用进行有效规范,极有可能会出现大规模侵犯隐私的事件,从而使大数据信息采集成为一种“社会安全隐患”。因此,全面的数据隐私保护与最大的公共安全追求将是大数据时代面对的一个重要课题。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21