2016年商业智能十大趋势
商业智能一直是发展最快的企业领域之一。不只是技术本身发展迅速,人们用于推广普及并从数据中获取价值的方法也在成倍地增加。人们愈发重视通过更加高级的分析来解答更加深入的问题,以及为管控自助商业智能而生的全新方法便是这些趋势之一。创新的潜能远未耗竭,本文将重点介绍2016年商业智能的几大趋势。
1. 管控与自助式分析成为最佳搭档
很多人都认为管控与自助式分析之间是水火不容的天敌关系。或许正因为此,他们看到管控与自助式分析把酒言欢会颇感吃惊。其实它们已化干戈为玉帛,业务与技术之间的文化隔阂也日渐烟消云散。各种各样的组织已经认识到,数据管控若方法得当,反而有助于培养一种分析文化,从而满足业务需求。如果有集中、清晰且快速的数据源,并且知道在安全和性能方面有人(IT部门)操心,人们便更有可能对数据进行深入的分析。
2. 可视化分析成为一种通用语言
无论是在董事会会议室,还是在传媒中,抑或是在社交媒体上,交流方式无不因数据而改变。人们通过将数据可视化来探讨问题、揭示洞见,以及与数据专家及非专家等人士分享故事。随着数据使用量的增长,将有更多的人通过数据来寻求专业问题和个人问题的答案。用人单位将寻觅能够缜密思考数据的求职者。届时,可视化分析将发挥通用语言的作用,襄助人们快速洞悉真知灼见、富有成效地展开协作并围绕数据建立一个社区。
3. 数据产品链变得大众化
自助式分析工具已经改变了人们对商品的期望。2016年,在数据的各个处理环节人们都将需要获得支持,尤其是随着更多千禧一代进入劳动大军,这种现象将更为明显。业务用户要想不断通过迭代方法持续改进,就必须能够即时地将特定数据形象地表现出来。正因为此,自助式数据准备工具甚至是自助式数据仓库作为自助式分析的自然延伸,其需求势必出现增长。得益于这种大众化,人们将能够快速响应不断变化的优先事务。
4. 数据集成开始风生水起
在很多公司都希望实现敏捷分析。他们希望快速向合适的人员提供合适的数据。 这是一项不小的挑战,因为这些数据位于很多不同的位置。跨多个数据源进行处理可能枯燥乏味且/或不可行。2016年,我们将看到数据集成领域涌现很多新的从业者。随着各种先进工具不断问世以及新的数据源层出不穷,公司将不再尝试从同一个位置收集每一项数据。 数据浏览器将连接到其所在位置的每个数据集,然后合并或混合数据,或者与更多敏捷工具和方法一起协同处理数据。
5. 高级分析不再只是分析师的专利
整个组织范围内的非分析人员也变得愈发老道精干。基于他们的数据所生成的图表已不能满足他们的胃口。 他们希望获得更深入、更有成效的分析体验。 因此,组织将采用可使用户应用统计数据、提出一系列问题并自始至终参与分析流程的平台。举例来说,作为中国第二大航空运输公司,东方航空的普通员工便能轻松利用Tableau控制面板进行高级数据分析,可对营销数据、竞争对手、其他航空运输公司以及各路航线的营收情况等高级数据进行分析。在使用Tableau的一年时间内,东方航空的营业收入增加了2亿美元。由此可见,非专业分析人士在处理高级数据时,有了Tableau的帮助,便可轻松应对。
6. 云端数据和云分析开始崛起
2015 年,人们开始欣然接受云。他们意识到,将数据放在云端不仅轻松方便,而且高度可扩展。他们还认识到,云分析使他们具备灵活应变、机动敏捷的能力。2016年,将有更多人改用云,这在一定程度上要得益于可帮助他们使用Web数据的各种工具。早期采用者们已经开始从这些数据中收获新知,其他人正逐渐认识到自己也应如此。越来越多的公司将利用云分析来更快地分析更多数据。他们将像依赖任何其他关键企业系统一样,完全离不开云分析。
7. 分析卓越中心(COE)带来卓越成效
为了促进自助式分析的采用,越来越多的组织将成立卓越中心。这些中心在推行以数据推动的文化方面发挥着至关重要的作用。这些中心会推出诸如在线论坛和一对一培训等支持计划,在相关计划的帮助下,即使不是专家,也能将数据纳入决策过程。久而久之,这些中心就会在整个组织范围内建立起以数据为依据制定工作流程的机制。
8. 移动分析自成一体
移动分析已然成熟,独立为一个领域。它不再只是与旧式商业智能产品交互的接口。2015年,能够提供流畅“移动优先”体验的产品开始出现。处理现实世界中的各种数据已不再是烦琐不堪的苦差事,而成了分析过程中充满活力的一个环节。近日,Tableau更是推出新的全新移动应用程序Vizable,为更多人带来了有趣易用的数据分析。这款免费的iPad应用程序支持使用捏合、轻扫和拖动等手势来探索数据,从而使用户可在数秒内实现数据的可视化,完美地实现了移动分析自助化、趣味化。从带着Apple Watch的“跑马达人”(跑马拉松爱好者)到需要分析电子表格、马不停蹄的企业管理者,Tableau的分析软件能帮助更多人看见并了解数据。
9. 人们开始深入发掘物联网数据
2016 年物联网势必更加盛行。似乎一切事物都将有一个传感器,用于将信息发回处理中心。不妨想一想移动设备昼夜不停产生的所有数据,这只是冰山之一角。随着物联网数据量的增长,从中分析出真知灼见的可能性也相应增加。企业将寻找可帮助用户探索数据、然后以安全、受控、交互性的方式分享发现结果的工具。
10. 新技术的兴起将填补缺口
在商业智能生态系统中已有很多新技术问世。随着这些技术进入市场,我们将看到有一些需要填补的缺口。为填补这些缺口,一些新的企业将应运而生。Hadoop加速器、NoSQL数据集成、物联网数据集成、改进的社交媒体-所有这些都提供了创立新企业的机遇。2016年,我们将看到一批致力于填补缺口的企业崛起,进而带动市场整合。形形色色的组织也将继续摒弃一个个孤立的解决方案,改而采用包含这些新技术的开放、灵活的解决方案堆栈。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13