英特尔自动化工厂背后 数据分析作用巨大
12月16日,由ZD至顶网联合工业4.0协会在上海举办的“中国制造千人会2016暨第二届互联网+制造高峰论坛”隆重召开。以“智慧的工厂,智能的产品”为主题,聚齐来自学界、产业界、互联网业和金融行业等不同领域的30位重量级嘉宾,共同探讨中国制造当前遇到的问题以及如何在中国制造转型之路上赢得先机,整场大会有宏观层面的政策、形势分析,又不乏微观层面的实现、探讨、布局,当然还有来自尖端工厂(英特尔成都自动化工厂)的分享。
英特尔产品(成都)有限公司制造信息部总经理钱静波
据英特尔产品(成都)有限公司制造信息部总经理钱静波介绍,英特尔从80年代进入CPU领域,最初的制造业可以说也十分传统,属于劳动密集型产业,缺乏自动化、很多生产技术全部手写、设备标准没有统一……出了问题靠人去处理。到了90年代有了一些进步,开始有物料的自动化传输、基于数字控制的自动化、设备控制、库存流程的自动化等。
随着自动化的实现,成本逐渐走低,品控逐渐走高。钱静波以库存控制为例解释说,生产过程中库存成本占总成本很大一个比例,如果库存太多了,成本就会很高,如果库存正好是客户需要的量,并且把它运出去、卖出去成本会极大的降低。
到了今天,英特尔正在做的物联网。英特尔认为磨刀不误砍柴工,因此无论是前沿技术的应用,还是日常维护一个都不能省,只不过英特尔已经利用数据分析等技术将维护变成了需要时再维护(换句话说他们能够预测什么时候需要维护),而不是固定某个时间去维护。其实有关数据的利用其实不仅限于维护层面,钱静波表示,如今包括客户需求的快速调整、库存控制等依托数据分析都可以做到很好的控制。
如何做到这些,钱静波首先还是强调了数据分析、需要大量的数据。这其中,英特尔支持工厂运作的团队会根据新的业务需求,及时的提取数据,并传输到实时系统,然后进行决策。
基于数据分析,应用在实际生产中,在四个方面都表现突出。第一部分,实时流程控制,快速响应的工厂中,设备一旦报警会立刻进行处理。第二,优化生产流程。第三,基于预测的设备维护优化(也就是前文提到的磨刀不误砍柴工)。第四,普及自动化和机械控制提高生产速度。
钱静波还举个一个实际的例子来说明怎么用大数据分析提高生产效率,并节省成本。他说,过去的芯片会接一根线出来,而现在的芯片下面有很多锡球,锡球非常小,一个芯片可能粘几百个锡球,如果一个没有粘上这个芯片就废了,生产中我们发现这个环节的浪费是非常严重的,如果能够改善这个环节对于提高良品率是大有益处的。通过分析,真空度和马达本身对这两个层面有很大影响,所以最后针对这两方面做了不少工作,然后逐渐提高了良品率。
还有一个例子,英特尔过去生产出来的芯片可能有裂缝,原来是人工一个一个拿放大镜检查,后来根据照相数据,全部照出来,逐个比较,有可能出现问题的拿出来,从而一方面提高效率,另一方面减少了人工干预,实现更高程度的自动化。
不过,虽说通过数据分析解决了不少问题,但钱静波也强调,数据分析不是一蹴而就的,以预警算法为例,数据的收集和分析要不断的完善,第一次算也许不好,后面一次一次优化,算法要根据数据不断的优化,最后达到理想的状态。
钱静波表示,物联网是一个大的系统工程,背后的系统、所需要的支持都是庞大的。据悉,英特尔全球有IT员工6000多人,支持整个工厂运作的人是1000多人,数据中心60多个。除此之外,据悉还有一点很重要的是,如果需要在工厂里走动怎么解决,答案是移动设备,英特尔有12万台移动设备,且100%配置了固态硬盘,同时配置了严格的信息安全策略。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21