大数据助运营商实现转型 五大问题亟待改进
今天,传统电信运营商,无论是发达国家的还是新兴市场的都面临市场饱和、增长乏力的局面,需找到新的增长源。一些传统的电信运营商已使用大数据改善现有的市场表现力、建立新的收入流,例如:美国的Verizon使用匿名的用户数据,通过补贴方式,向第三方销售广告。它的竞争对手AT&T则建立了大数据动力塔断电工具,更好地实现基站的优化修理,让用户获得更好的体验。对于尚未使用大数据的传统电信运营商,需要确定其大数据发展的规划、IT解决方案,建立相关的支持组织,实现大数据的发展。
第一,使用大数据接入和分析丰富和个性化的数据通过大数据的使用,运营商可实时接入丰富的和个性化的用户数据,从这些数据中获得更多的价值,这是传统运营商独有的优势之一。实现成本优化和开拓新的收入源。运营商可利用这一优势地位,建立用户观察中心,提供各种基于大数据的产品和服务,从中获得不同程度的经验和增值。
第二,使用大数据实现结构性和非结构性数据的结合使用。对于传统的电信运营商,大数据商机无限,因为他们已掌握了大量的结构性数据,包括网络使用、地点、交易账单和个人信息。无结构的数据包括:呼叫中心的文件、社交媒体交换信息等。对于传统的运营商,要改善效率和经营效果,需要在一定时间内、系列的结构性数据与非结构性数据使用上找到平衡点。通过价格优化,实现收入增长、改善目标和扩展用户生命期、降低经营成本、实现支出的智能化。使用大数据,可实现对现有收入流的优化。
第三,以智能方法替代传统的分析方法在大数据时代,需要使用智能方法对数据进行分析,包括数据的抽取、转换、装载,以代替传统的数据分析方法。电信运营商无需新的数据源,只需建立大容量存储容量或确保快速的数据处理速度。例如:欧洲的传统运营商运用智能分析法改善发展中市场消费者的智能手机普及率。通过统计分析不同通话周期的通话模式,确定对手机普及率的影响者,确定目标影响者,为其提供相应的服务。
当然,为了促进大数据的发展,传统电信运营商需建立一个相应的团队来实施大数据计划,确定数据的收集、组织、管理和使用。可以采取与其它单位合作的方式,也可采用合资的方式建立相应的团队。目前,全球一些运营商已成功与其它部门共同建立了大数据团队,实现团队与商业市场间的紧密连接,以分析和解决相关的商业问题。
一是,分析人才的缺乏。在竞争激烈的情况下,分析人才缺乏成为吸引资源的主要风险。根据Gartner的研究,2015年,三个与大数据相关的工作中就有一个空缺,主要是因为相关技能不足。
二是,数据的质量或可用性。对于企业,经常面临的问题是没有建立适当的数据治理体制。数据质量或可用性是导致数据不准确的关键,会导致分析和结论出现问题,这一问题对新兴市场的挑战更大。对于许多运营商来说,准确的数据来源和组织是至关重要的。
三是,无效的大数据团队。许多传统的电信运营商将大数据放在IT或商业智能化部门,由于远离商业部门,在制定和选择解决方案时,往往很少考虑商业的需要,这将大大影响数据团队的运作效果。
四是,很难获得安全方面所需的资金。许多传统的电信运营商为了提高边际收益,往往会压缩资本支出,为此也不愿意加大投入,更别提加大安全方面的投入了。但这一投资对于企业的发展又是至关重要的。
五是,法律和管制面临的挑战。对于传统的运营商,应意识到并遵循用户数据的相关限制。要让用户相信,他们的数据被使用让他们获得了最佳利益。
首先,减少用户流失率。印尼的电信运营商Telkomsel采用大数据进行分析,减少用户流失率、降低用户收入的成本、扩大用户在网时间。T-Mobile使用数据分析平台,减少用户流失率。
其次,提供定制化服务。运营商Airtel与Mobileum联手,对非洲用户数据进行分析,更好的了解和测算用户国际旅行的需求。可帮助Airtel为漫游用户提供定制化服务。Vodafone与TomTom在个人导航装置方面合作,为TomTom在全球34个国家提供装置所需SIM,SIM可实现M2M通信。德国电信与Kiunsys公司合作,为意大利Pisa提供智慧城市解决方案,主要是利用大数据优化服务。
再次,大数据品牌解决方案法国电信Orange创立了一个大数据产品Flux Vision,作为其商业服务的一部分。法国旅游机构可使用这一工具了解用户行为等。德国电信通过其分支机构提供一些大数据解决方案,包括实时安全分析、移动性连接、面向私人和公共组织的云解决方案。
然后,为第三方提供大数据解决方案。前新西兰电信公司为外部机构提供大数据解决方案,主要是为私人企业和公共机构提供数据观察、服务及云解决方案。新加坡电信成立了DataSpark公司,为第三方提供大数据解决方案,提供的服务包括:GeoAnalytics,确定不同目标群运动幅度、模式和步幅。
最后,扩大新的业务收入流。Telefónica提供了一种智能步伐产品,用于分析人群的行为,帮助企业和公共机构改善对消费者的了解,更好地做出决策。Telefónica利用大数据扩展新的收入源。它联合一家银行推出了Yaap购物业务,以提供数字化服务简化人们的日常生活为目标。希望成为面向西班牙人的最大网络,同时,积累消费者购物行为的数据。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10