大数据精准营销中的个性化推荐与应用
亚马逊通过个性化推荐所获取的交易额占总交易额的20%;双十一期间,天猫和淘宝通过对数据的挖掘,使用了“千人千面”的个性化推荐;阿里CEO张勇在之后的媒体沟通会上肯定赞扬了个性化推荐所取得的成绩…….。
这一切表明,个性化推荐所突显的作用越来越受到企业的重视。
何为个性化推荐?概括来说“人-场景-商品”这三个维度是人性化推荐的基础。推荐的过程就是通过寻找这三个维度之间的相关性,提供“人-场景-商品”的最佳组合。
个性化推荐可分为两类:基于内容的推荐、协同过滤推荐,下面我们来分别了解一下。
一、基于内容的推荐(Content-based Recommendations)
第一步是统计相应的内容材料,确定样本集的正例和负例。举个栗子:如果要将iphone6s 推荐给相应的客户,那么样本集正例就是那些购买过iphone6s的人,样本集负例就是那些没购买过iphone6s的人。
第二步就是引用学习算法,基于内容的推荐的学习算法主要有:Rocchio算法、决策树算法、线性分类算法、朴素贝叶斯算法、GBDT。这些学习算法都可以在网上找到相应的代码,可以根据相应的数据特点和所要应用的商业场景选择相应的学习算法。
第三步是确定模型的特征变量,这需要先为每一个item(场景下的商品)提取出相应的特征数据,并且统计样本中的人对于每一个item的特征偏好(喜欢和不喜欢),这样学习算法可以算出特征变量对于模型的卡方和增益,卡方越大,说明该特征变量对于模型样本的区分度越高,增益越大,说明该特征变量给模型带来的信息熵越高。举个栗子:对于”iphone6s目标客户“模型,有地域、收入、年龄、学历、历史购买均单价等特征变量,其中卡方的大小:收入>历史购买均单价>学历>年龄>地域,那么对于“iphone6s目标客户“模型来说,特征变量的重要性大小:收入>历史购买均单价>学历>年龄>地域。需要说明的是;选择特征变量时,要结合样本集的数据量,因为当样本集数据量过大,而特征变量太少,就会导致内容推荐模型欠拟合,当样本集数据量太少,而特征变量又多,则会导致内容推荐模型过拟合。过拟合和欠拟合都会影响推荐模型的准确性。
第四步是训练模型,可以通过调参数的方式优化模型的正确率,正确率越高,表示模型的质量越高。
简要的说:基于内容的推荐是就是通过机器学习产生相应的规则模型,然后用模型预测用户在特定场景下对商品的偏好度。
基于这样的思维方式,我们可以在各个场景下针对不同的商品构建出不同的模型,有了这些模型集,当新的用户进来,跑下各个模型,就可以判断该用户是哪个商品的目标客户,从而判断给她推荐什么商品。
二、协同过滤(Collaborative Filtering Recommendation)
第一种是基于用户的协同过滤,这种一般基于用户有足够的社会属性数据。举个栗子:用户凯文对iphone6s没有相应信息记录,那么可以(采用皮尔森系数)找到和凯文社会属性相似的晓华, 统计晓华对iPhone6s 的偏好度( 对比晓华对于所有商品的偏好度)。最后预测出凯文对于iphone6s的偏好度。
第二种是基于物品的协同过滤,这种多应用于电商业务中,再举个栗子:用户凯文对于iphone6s没有相应的信息记录,那么可以(采用余弦算法)找到和iPhone6s具有相同的产品特征的商品x, 统计凯文于商品x的偏好度(对比凯文对于所有商品的偏好度),最后预测出凯文对于iphone6s的偏好度。
协同过滤的算法主要有:皮尔森算法,杰西卡算法,余弦距离相似算法,欧式距离算法等。在此不做赘述,本文重点对个性化推荐相关分类内容进行阐述,以此抛砖引玉,期待与大家进一步深入探讨。
三、案例
网舟科技为客户提供的个性化荐服务,通过对用户线上线下数据的聚类、关联和协同过滤,建立了不同使用场景的推荐机制,实现推荐引擎从传统的大众化推荐向差异化推荐转变,协助企业实现智能商品导购,提升了用户购买过程的体验,增加了商品的销量。通过分析大量用户行为日志,精准把握消费偏好,针对用户整个浏览过程中的各个页面,给用户提供个性化页面展示。在用户购买最佳的时间,为用户推荐最适合的商品,从而提高网站的点击率和转化率。达到拉动销售额增长,增加交叉/向上销售,提升客户满意度的效果(如图所示)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31