大数据时代 商业取经向谁靠齐
偶然一次的网页点击、搜索引擎中的关键字查询、购物网站中的浏览痕迹,每一个小小动作的背后,都给了互联网公司一次增加了解你的机会。大数据时代已经轰然到达。BAT(百度、阿里巴巴、腾讯)三巨头对于大数据的布局有何异同?谁更有潜力?枯燥的数据如何转换成生意?
百度:技术为王
百度公司的大数据产品正一个接一个的落地。
今年1月26日,百度上线了基于定位服务的人口迁徙大数据项目“百度迁徙”。在春运期间,用户通过该项目实时查看全国范围8小时内的人口迁徙轨迹及特征。
近日,百度又上线了“百度预测”,可以对景区舒适度进行预测。这个应景清明小长假的产品后续还能在更广泛的领域发挥作用。例如,城市旅游预测、感冒流行趋势预测、高考考研预测、金融预测、票房预测等,对各行业细分领域进行数据解读。
虽然百度方面表示“百度迁徙”是一个社会公益项目,项目本身并无赢利的考量和计划,“百度预测”也没有解决商业化的问题,但其实大数据这把“金钥匙”已打开了百度商业价值的大门。
百度数据更大的想象力在于,它在以此为依托,一步步颠覆传统行业。
以金融业为例,4月3日,百度拿到证监会颁发的“基金销售支付牌照,这意味着百度将可以面向用户提供低成本基金支付服务。早在2013年10月,“百度金融中心-理财”上线时,百度便透露了做互联网金融的动机,百度百付宝总经理章政华表示,百度每天搜索金融相关检索词的数量达到3.3亿,银行产品和证券、基金产品的搜索占比高达77%。这些“牌照”和业务功能,既是百度完善移动服务交易闭环的重要工具和百度金融理财的重要载体,也是百度实现商业变现的重要保障。
阿里巴巴:交易至上
根据阿里巴巴董事局主席马云最新的内部邮件,“云端+大数据”是阿里的战略。不懂技术的马云,将如何带领阿里巴巴步入大数据时代?
消费者在淘宝或天猫上的每一次消费记录,阿里巴巴都会记录在案,交易以及信用数据成为阿里的一手材料。淘宝建立的数据地图,是阿里大数据的第一步。每一个数据都由很多个数据产生,建立数据地图,以追溯到数据的源头,提高数据的质量和价值,数据魔方、聚石塔等产品,也是阿里大数据的初步应用。
作为支撑大数据密不可分的一部分,阿里的云平台阿里云成立于2009年。而根据阿里数据,阿里云也的确帮助阿里扛过了2013年的“双十一”高峰。据统计,2013年“双十一”的1.88亿笔交易中,75%的交易都在阿里云平台上运行,实现了零漏单、零故障。而2012年这一比例只有20%。
然而,阿里并不是一家技术驱动的公司,而是业务驱动的。通过大数据诞生的各种用户行为分析,也不应仅仅停留在1分钟的文胸销量到底等于多少个珠穆朗玛峰。如何让数据扩展到交易领域,让天下没有难做的“数据生意”,是阿里面临的最大挑战。
腾讯:社交为先
在BAT三巨头里,腾讯是最后一个搭建云平台的。2013年9月,历经两年研发内测的腾讯云生态系统,终于向整个互联网敞开了大门。作为一家有着强烈社交基因的公司,腾讯拥有的社交大数据可以帮助其完成数据的制造、流通、消费和挖掘。
腾讯有着丰富的社交矩阵,大数据来源于多种社交渠道,包括腾讯微博、QQ和微信。然而,不同社交平台的特性决定了数据的差异,例如,在QQ空间等私密性更高、黏性更好的社交平台上,消费者可能更愿意透露自己的生活状态及需求。而随着微信商业化的推进,朋友圈产生的数据还需要花更大力气加工处理,才能筛选出真正有价值的、能够代表用户行为模式、兴趣偏好的数据。对于腾讯而言,社交矩阵之间的数据打通,会大大提高其大数据的价值,才可以使投放广告的企业实现更加精准的营销。
值得注意的是,腾讯效果营销平台广点通代表的大数据应用已经发挥了关键性作用。小米旗下新品红米Note日前与QQ空间再度展开的社会化营销合作,创造了1500万的手机网络预约人数纪录,开售第一秒吸引41.9万人点击抢购,成为基于社交数据营销的经典。
总结
说到底,大数据的利用难点在于技术。从数据的收集到存储,再到整理,直到最后的挖掘利用,均是技术活儿。百度含着数据出生,具备天生的大数据挖掘能力。随着支付闭环的打造,数据也可以在各种各样的场景找到落脚点。而阿里和腾讯作为业务驱动和产品驱动的公司,要下大力气将底层的大数据打通,进一步挖掘数据,让数据更好地为公司服务。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20