大数据时代 数据驱动如何集成?
数据集成是指将来源于不同系统的数据组合在一起,供业务用户研究不同的行业行为及客户行为的数据处理方式。在数据集成应用早期,数据仅限于交易系统及其应用。业务决策的制定以决策平台为指导,而有限的数据集提供了创建决策平台的基础。
数据容量与数据类型在过去三十年里大幅增长,数据仓库技术从无到有,基础架构和技术的发展满足了分析和数据存储需求。这一切彻底改变了数据集成的前景。
传统数据集成技术主要关注于架构和相关编程模型的ETL、ELT、CDC和EAI类型。然而,在大数据环境里,这些技术需要根据规模和处理复杂度等需求进行修改,其中包括需要处理的数据格式。实现大数据处理需要两个步骤。第一步是实现数据驱动的架构,其中包括数据处理的分析和设计。第二步是物理架构实现,我们将在下面的章节介绍这个步骤。
数据驱动的集成
在建造下一代数据仓库的技术方法中,企业中所有数据首先会根据数据类型进行分类,也会考虑到数据本身的性质及其相关的处理需求。数据处理过程将会用到内置在处理逻辑中并且整合到一系列编程流程中的业务规则,数据处理会使用到企业元数据、MDM和语义技术(分词技术)等。
图10.3显示了各类数据的入口数据处理过程。这个模型首先基于数据的格式和结构划分数据类型,然后再进行ETL、ELT、CDC或文本处理技术中各个层次的规则处理。下面,让我们来分析一下数据集成架构及其优点。
图1
数据分类
如图1所示,数据可以粗略地划分为以下分类:
事务处理数据。比如典型的OLTP数据。
Web应用数据。比如组织开发的Web应用所产生的数据。这些数据包括点击流数据、Web销售数据及客户关系和呼叫中心通话数据。
EDW数据。这是来自组织当前所用数据仓库的现有数据。它可能包括组织中各种不同的数据仓库和数据集市,它们存储和处理着供业务用户使用的数据。
分析数据。这些数据来自于目前组织部署的分析系统。现在这些数据主要基于EDW或事务数据。
非结构化数据。这个大分类包括:
文本:文档、笔记、记事和通讯录
图像:照片、图表和图形
视频:与组织相关的企业和客户视频
社交媒体:Facebook、Twitter、Instagram、LinkedIn、论坛、YouTube和社区网站
音频:呼叫中心通话、广播
传感器数据:包括来自营业范围相关的各种设备的传感器数据。例如,能源公司会产生智能测量仪表数据,而物流与配送供应商(UPS和FedEx)产生的是卡车和汽车传感器数据。
天气数据:现代B2B和B2C公司用天气数据分析天气对业务的影响;它已经成为预测分析的重要元素。
科学数据:应用于医学、制药、保险、医疗和金融服务,这些领域都需要复杂的数据计算能力,其中包括模拟和生成模型。
股市数据:许多组织用它处理金融数据,预测市场趋势、金融风险和进行精算计算。
半结构化数据。其中包括电子邮件、演示文稿、数学模型、图形和地理数据。
架构
在确定和整理好不同的数据类型之后,就可以清晰确定各种数据特征——包括数据类型、关联的元数据、可以标识为主数据元素的重要数据元素、数据复杂度及拥有和管理数据的业务用户。
工作负载
处理大数据的最大需求是前面章节所介绍的工作负载管理。
图2
有了数据架构和分类,我们就可以分配可以执行该类数据工作负载需求的基础架构。
我们可以根据数据容量和数据延迟时间将工作负载大体分成4类(图2)。然后,我们再根据类别将数据分配到物理基础架构层进行处理。该管理方法可以为数据仓库的各个部分创建一种动态可扩展需求,它们可以高效利用当前及未来的新基础方法。在这个时候,一定要注意的关键问题是要保持处理逻辑的灵活性,使它能够在不同的物理基础架构组件上发挥作用,因为数据是根据处理紧迫性进行分类的,这样相同的数据就可能会被归类到不同的工作负载上。
工作负载架构将进一步决定混合工作负载管理的条件,来自不同工作负载的数据会一同处理。
例如,通常我们只需要在一个环境中处理一种数据及其负载,如果将高容量低延迟数据和低容量高延迟数据放在一起处理,数据处理环境就会面临多样化压力。同时发生或高频的用户查询和数据加载会进一步加大数据处理的复杂性,情况可能会很快失去控制,然后影响整体性能。如果一个基础架构同时处理大数据和传统数据,再加上这些复杂性,那么问题会更加严重。
划分工作负载的目标是确定数据处理的复杂性,以及如何降低下一代数据仓库的基础架构设计的风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12