京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 数据驱动如何集成?
数据集成是指将来源于不同系统的数据组合在一起,供业务用户研究不同的行业行为及客户行为的数据处理方式。在数据集成应用早期,数据仅限于交易系统及其应用。业务决策的制定以决策平台为指导,而有限的数据集提供了创建决策平台的基础。
数据容量与数据类型在过去三十年里大幅增长,数据仓库技术从无到有,基础架构和技术的发展满足了分析和数据存储需求。这一切彻底改变了数据集成的前景。
传统数据集成技术主要关注于架构和相关编程模型的ETL、ELT、CDC和EAI类型。然而,在大数据环境里,这些技术需要根据规模和处理复杂度等需求进行修改,其中包括需要处理的数据格式。实现大数据处理需要两个步骤。第一步是实现数据驱动的架构,其中包括数据处理的分析和设计。第二步是物理架构实现,我们将在下面的章节介绍这个步骤。
数据驱动的集成
在建造下一代数据仓库的技术方法中,企业中所有数据首先会根据数据类型进行分类,也会考虑到数据本身的性质及其相关的处理需求。数据处理过程将会用到内置在处理逻辑中并且整合到一系列编程流程中的业务规则,数据处理会使用到企业元数据、MDM和语义技术(分词技术)等。
图10.3显示了各类数据的入口数据处理过程。这个模型首先基于数据的格式和结构划分数据类型,然后再进行ETL、ELT、CDC或文本处理技术中各个层次的规则处理。下面,让我们来分析一下数据集成架构及其优点。
图1
数据分类
如图1所示,数据可以粗略地划分为以下分类:
事务处理数据。比如典型的OLTP数据。
Web应用数据。比如组织开发的Web应用所产生的数据。这些数据包括点击流数据、Web销售数据及客户关系和呼叫中心通话数据。
EDW数据。这是来自组织当前所用数据仓库的现有数据。它可能包括组织中各种不同的数据仓库和数据集市,它们存储和处理着供业务用户使用的数据。
分析数据。这些数据来自于目前组织部署的分析系统。现在这些数据主要基于EDW或事务数据。
非结构化数据。这个大分类包括:
文本:文档、笔记、记事和通讯录
图像:照片、图表和图形
视频:与组织相关的企业和客户视频
社交媒体:Facebook、Twitter、Instagram、LinkedIn、论坛、YouTube和社区网站
音频:呼叫中心通话、广播
传感器数据:包括来自营业范围相关的各种设备的传感器数据。例如,能源公司会产生智能测量仪表数据,而物流与配送供应商(UPS和FedEx)产生的是卡车和汽车传感器数据。
天气数据:现代B2B和B2C公司用天气数据分析天气对业务的影响;它已经成为预测分析的重要元素。
科学数据:应用于医学、制药、保险、医疗和金融服务,这些领域都需要复杂的数据计算能力,其中包括模拟和生成模型。
股市数据:许多组织用它处理金融数据,预测市场趋势、金融风险和进行精算计算。
半结构化数据。其中包括电子邮件、演示文稿、数学模型、图形和地理数据。
架构
在确定和整理好不同的数据类型之后,就可以清晰确定各种数据特征——包括数据类型、关联的元数据、可以标识为主数据元素的重要数据元素、数据复杂度及拥有和管理数据的业务用户。
工作负载
处理大数据的最大需求是前面章节所介绍的工作负载管理。
图2
有了数据架构和分类,我们就可以分配可以执行该类数据工作负载需求的基础架构。
我们可以根据数据容量和数据延迟时间将工作负载大体分成4类(图2)。然后,我们再根据类别将数据分配到物理基础架构层进行处理。该管理方法可以为数据仓库的各个部分创建一种动态可扩展需求,它们可以高效利用当前及未来的新基础方法。在这个时候,一定要注意的关键问题是要保持处理逻辑的灵活性,使它能够在不同的物理基础架构组件上发挥作用,因为数据是根据处理紧迫性进行分类的,这样相同的数据就可能会被归类到不同的工作负载上。
工作负载架构将进一步决定混合工作负载管理的条件,来自不同工作负载的数据会一同处理。
例如,通常我们只需要在一个环境中处理一种数据及其负载,如果将高容量低延迟数据和低容量高延迟数据放在一起处理,数据处理环境就会面临多样化压力。同时发生或高频的用户查询和数据加载会进一步加大数据处理的复杂性,情况可能会很快失去控制,然后影响整体性能。如果一个基础架构同时处理大数据和传统数据,再加上这些复杂性,那么问题会更加严重。
划分工作负载的目标是确定数据处理的复杂性,以及如何降低下一代数据仓库的基础架构设计的风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07