基于技能的改善数据科学实践的方法
在当今的大数据时代,利用数据科学理论进行数据分析起着越来越重要的作用。探讨不同数据技巧类型和熟练程度对相关项目有着怎样的影响也开始具有重要意义。近日,AnalyticsWeek的首席研究员、Bussiness Over Broadway的总裁Bob Hayes博士就公开了研究数据分析项目成功所必需技能的相关结果。Bob所提出的基于技能的数据科学驱动力矩阵方法,可以指出最能改善数据科学实践的若干技能。
首先,Bob在AnalyticsWeek的研究包含了很多向数据专家提出的,有关技能、工作角色和教育水平等有关的问题调查。该调查过程针对5个技能领域(包括商业、技术、编程、数学和建模以及统计)的25个数据技能进行,将其熟练程度划分为了6个等级:完全不知道(0分)、略知(20分)、新手(40)、熟练(60分)、非常熟练(80分)和专家(100分)。这些不同的等级就代表了数据专家给予帮助或需要接受帮助的能力水平。其中,“熟练”表示刚好可以成功完成相关任务,为某个数据技能所能接受的最小等级。“熟练”以下的等级表示完成任务还需要帮助,等级越低需要的帮助越多;而“熟练”以上的等级则表示给予别人帮助的能力,等级越高给予的帮助可以更多。
Bob列出了4中不同工作角色对于25种不同数据技能的熟练程度。从上图可以看出,不同领域的专家对其领域内技能的掌握更加熟练。然而,即使是数据专家对于某些技能的掌握程度也达不到“熟练”的程度。例如,上图中浅黄色和浅红色区域都在60分以下。这些技能包括非结构化数据、NLP、机器学习、大数据和分布式数据、云管理、前端编程、优化、概率图模型以及算法和贝叶斯统计。而且,针对以下9种技能,只有一种类型的专家能够达到熟练程度——产品设计、商业开发、预算编制、数据库管理、后端编程、数据管理、数学、统计/统计建模以及科学/科学方法。
并非所有的数据技能都同等重要
接下来,Bob继续探讨了不同数据技能的重要性。为此,AnalyticsWeek的研究调查了不同数据专家对其分析项目结果的满意程度(也表示项目的成功程度):从0分到10分,其中0分表示极度不满意,10分表示极度满意。
对于每一种数据技能,Bob都将数据专家的熟练程度和项目的满意度进行了关联。下表就列出了4种工作角色的技能关联情况。表中关联度越高的技能就表示该技能对项目成功的重要性越高。而表中上半部分的技能相比于下半部分的技能对于项目结果更加重要。从表中可以看出,商业管理者和研究者的数据技能和项目结果的满意度关联度最高(平均r=0.30),而开发人员和创新人员的关联度只有0.18。此外,四种工作角色中不同数据技能之间的平均关联度只有0.01,表明对于一种数据专家是必须的数据技能对于其他数据专家未必是必须的。
基于熟练程度和关联度的结果,Bob绘出了数据科学驱动力矩阵(Data Science Driver Matrix,DSDM)的示意图。其中,x轴代表所有数据技能的熟练程度,y轴代表技能与项目结果的关联度,而原点则分别对于熟练程度的60分和关联度的0.30。
在DSDM中,每一种数据技能都会落在其中的一个象限中。由此,这种技能所代表的含义也就不同。
Bob针对商业管理者、研究者、开发人员和创新人员4中角色分别创建了DSDM,并主要关注落在第一象限的技能。
商业管理者对于商业管理者而言,第一象限中的技能包括统计学/统计建模、数据挖掘、科学/科学方法、大数据和分布式数据、机器学习、贝叶斯统计、优化、非结构化数据、结构化数据以及算法。而没有任何技能落在第二象限。
开发人员对于开发人员,只有系统管理和数据挖掘两种技能落在第一象限。绝大部分技能都落在第四象限。
创新人员对于创新人员,共有数学、数据挖掘、商业开发、概率图模型和优化等五种技能落在第一象限。而绝大部分技能都落在第四象限。
研究者对于研究者,共有算法、大数据和分布式数据、数据管理、产品设计、机器学习和贝叶斯统计等五种技能落在第一象限。而落在第二象限的技能却很少。
从以上的研究中,Bob得到以下结论:
除此之外,Bob还提出团队合作对于项目成功也有着非凡的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10