京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘应用开发中的辩证法
数据挖掘应用的开发流程见下图,因为数据挖掘应用整个开发流程是一个探索的过程,所以各个过程之间不是严格分开的。
数据挖掘应用,是数据驱动的应用,不同的用户,因诉求不同,观察同样的数据,理解也不尽相同。在浏览数据时,建议不断问自己:用户是谁?分析的对象是谁?要解决什么问题?只有不断的提醒自己,才能保证分析过程的始终有一条清晰的主轴,这是在分析传统应用时非常不同的地方。传统的应用,需要解决的问题是很清晰的,已具备的条件也是清楚的,缺少的就是设计和实现。
定义问题阶段,具体的问题,可能对最终方案直接产生较大影响的时,解决这个问题,最终的硬件需要多少?譬如:通过信令数据分析手机用户的常驻点行为。一个应用是给公安系统开放接口:输入一个手机号,将指定用户最近的常驻点显示出来。另一个应用是给交通部门开放接口,根据用户群体的行为,规划道路设计。这两类应用,从数据分析角度观察都不大,都是常驻点分析,但从具体的应用观察,系统架构设计完全就不是一回事了。
解决相同的问题,可以有多个模型,不同的模型,对数据格式有不同的要求。数据的预处理过程与模型紧密相关。同样是解决聚类问题的算法,有的算法能够直接处理大、中、小这样的数据类型,有的算法需要大中小转换成 0、1、2这样的数字才能处理。
选择一个模型时,最终的分析结果可能并不理想,这时不能轻易的否定掉这个模型,如果数据预处理不到位,好的模型也会产生不好的结果。反过来,选错了模型,数据预处理模块再怎么努力,效果也不会有本质的提高。对于系统设计人员,除了知道不同的分析模型对应解决的问题,还需要知道每个分析模型适用范围和先决条件。
数据预处理过程还有一个误区,原始的数据总是有残缺的和异常值等现象存在。但从另一个角度思考,水至清则无鱼,异常数据不等于无价值数据。异常数据对数据分析结果肯定有影响,但如果把异常数据都穿上漂亮的衣服,那么有可能就会将数据的本来面目同样隐藏起来了。对异常数据的处理态度,还是与具体的应用有关,如果是分析人员的常驻地点,异常值价值就不大,如果是分析信用卡诈骗的应用,异常值就是价值特别高的数据。
数据预处理,从某种意义说就是一门艺术,是整个数据挖掘过程中最耗时的一个过程。
选择了一个模型,效果好不好,还需要对模型的效果进行验证。模型需要快速的反馈结果。验证模型的过程,是一个反复的过程,期间需要对不同的参数进调整。如果不能快速输出结果,例如每调整一个参数,都需要一天才能看到最终的运行结果,在系统设计过程中,这样的速度是不能接受的。为了能够快速的验证模型,需要对数据进行抽样。抽样过程可以分为广度优先和深度优先两种方式,譬如:通过上网记录分析用户的行为习惯,在选择和验证模型时,不可能对全量数据进行分析。这时,可以选取部分人群进行深层次的分析:选择100个人,分析3年的上网记录。也可以选取全量人员,分析最近一个星期的上网记录。具体采取何种方式,还是与具体的应用相关。
验证模型时,除了从技术方面考虑,还要从考虑成本的可行性。成本可分为直接成本和替代成本。直接成本,就是按照现在的模型投入到生产环境中,最乐观的情况下,需要多少硬件成本和后期维护成本。影响直接成本的因素很多,在相同的模型下,分析精度是影响直接成本的一个重要因素。除了直接成本,还要考虑替代成本。什么是替代成本?举个例子,有个数据分析应用是:分析电信用户账单,找出高价值用户。开发成本100W,硬件成本200W,后期维护需要两个工程师,每年成本50W。对应这样的系统,达到的分析效果,很可能雇佣两个普通职员,采用普通SQL语句和EXCEL表格统计,就能把相同的事情做了。此种场景,替代成本是很低的,系统是没有竞争力。
选定了模型,下面就是部署模型了。部署模型不是简单的将验证过的模型放在生产环境下运行。部署模型,是一个完整的开发流程。验证模型时,为了提高反馈速度,可以不考虑系统的完整性、架构、开发语言、可服务性等等因素。简单说,怎么快就怎么来。不同应用,部署模型的过程不一样。
例一:文本分类器。在验证模型阶段,使用不同的算法对大量的语料进行分析,输出一个模型,然后使用另外一些语料对这个模型进行验证,如果可行,将这个模型部署到生产环境中。此例中,被部署的模型可以使用模型验证阶段相同的技术得到。但是使用这个模型,验证和生产的实现可能完全不一样。在验证阶段,慢慢对文本进行分类问题不大,但在生产环境中,有大量待分类的文本需要处理,效率、并发、接口方式都需要综合考虑了。
例二:通过分析信令信息得到用户的常驻地。此应用,验证模型中的直接产出(如代码)在生产环境中就很难复用。模型验证时,可能使用Python语言编写的公开代码库,在实现时为了效率,可能采用JAVA在Hadoop架构上实现。
部署模型阶段,简单理解就是常规系统的开发过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06