数据挖掘应用开发中的辩证法
数据挖掘应用的开发流程见下图,因为数据挖掘应用整个开发流程是一个探索的过程,所以各个过程之间不是严格分开的。
数据挖掘应用,是数据驱动的应用,不同的用户,因诉求不同,观察同样的数据,理解也不尽相同。在浏览数据时,建议不断问自己:用户是谁?分析的对象是谁?要解决什么问题?只有不断的提醒自己,才能保证分析过程的始终有一条清晰的主轴,这是在分析传统应用时非常不同的地方。传统的应用,需要解决的问题是很清晰的,已具备的条件也是清楚的,缺少的就是设计和实现。
定义问题阶段,具体的问题,可能对最终方案直接产生较大影响的时,解决这个问题,最终的硬件需要多少?譬如:通过信令数据分析手机用户的常驻点行为。一个应用是给公安系统开放接口:输入一个手机号,将指定用户最近的常驻点显示出来。另一个应用是给交通部门开放接口,根据用户群体的行为,规划道路设计。这两类应用,从数据分析角度观察都不大,都是常驻点分析,但从具体的应用观察,系统架构设计完全就不是一回事了。
解决相同的问题,可以有多个模型,不同的模型,对数据格式有不同的要求。数据的预处理过程与模型紧密相关。同样是解决聚类问题的算法,有的算法能够直接处理大、中、小这样的数据类型,有的算法需要大中小转换成 0、1、2这样的数字才能处理。
选择一个模型时,最终的分析结果可能并不理想,这时不能轻易的否定掉这个模型,如果数据预处理不到位,好的模型也会产生不好的结果。反过来,选错了模型,数据预处理模块再怎么努力,效果也不会有本质的提高。对于系统设计人员,除了知道不同的分析模型对应解决的问题,还需要知道每个分析模型适用范围和先决条件。
数据预处理过程还有一个误区,原始的数据总是有残缺的和异常值等现象存在。但从另一个角度思考,水至清则无鱼,异常数据不等于无价值数据。异常数据对数据分析结果肯定有影响,但如果把异常数据都穿上漂亮的衣服,那么有可能就会将数据的本来面目同样隐藏起来了。对异常数据的处理态度,还是与具体的应用有关,如果是分析人员的常驻地点,异常值价值就不大,如果是分析信用卡诈骗的应用,异常值就是价值特别高的数据。
数据预处理,从某种意义说就是一门艺术,是整个数据挖掘过程中最耗时的一个过程。
选择了一个模型,效果好不好,还需要对模型的效果进行验证。模型需要快速的反馈结果。验证模型的过程,是一个反复的过程,期间需要对不同的参数进调整。如果不能快速输出结果,例如每调整一个参数,都需要一天才能看到最终的运行结果,在系统设计过程中,这样的速度是不能接受的。为了能够快速的验证模型,需要对数据进行抽样。抽样过程可以分为广度优先和深度优先两种方式,譬如:通过上网记录分析用户的行为习惯,在选择和验证模型时,不可能对全量数据进行分析。这时,可以选取部分人群进行深层次的分析:选择100个人,分析3年的上网记录。也可以选取全量人员,分析最近一个星期的上网记录。具体采取何种方式,还是与具体的应用相关。
验证模型时,除了从技术方面考虑,还要从考虑成本的可行性。成本可分为直接成本和替代成本。直接成本,就是按照现在的模型投入到生产环境中,最乐观的情况下,需要多少硬件成本和后期维护成本。影响直接成本的因素很多,在相同的模型下,分析精度是影响直接成本的一个重要因素。除了直接成本,还要考虑替代成本。什么是替代成本?举个例子,有个数据分析应用是:分析电信用户账单,找出高价值用户。开发成本100W,硬件成本200W,后期维护需要两个工程师,每年成本50W。对应这样的系统,达到的分析效果,很可能雇佣两个普通职员,采用普通SQL语句和EXCEL表格统计,就能把相同的事情做了。此种场景,替代成本是很低的,系统是没有竞争力。
选定了模型,下面就是部署模型了。部署模型不是简单的将验证过的模型放在生产环境下运行。部署模型,是一个完整的开发流程。验证模型时,为了提高反馈速度,可以不考虑系统的完整性、架构、开发语言、可服务性等等因素。简单说,怎么快就怎么来。不同应用,部署模型的过程不一样。
例一:文本分类器。在验证模型阶段,使用不同的算法对大量的语料进行分析,输出一个模型,然后使用另外一些语料对这个模型进行验证,如果可行,将这个模型部署到生产环境中。此例中,被部署的模型可以使用模型验证阶段相同的技术得到。但是使用这个模型,验证和生产的实现可能完全不一样。在验证阶段,慢慢对文本进行分类问题不大,但在生产环境中,有大量待分类的文本需要处理,效率、并发、接口方式都需要综合考虑了。
例二:通过分析信令信息得到用户的常驻地。此应用,验证模型中的直接产出(如代码)在生产环境中就很难复用。模型验证时,可能使用Python语言编写的公开代码库,在实现时为了效率,可能采用JAVA在Hadoop架构上实现。
部署模型阶段,简单理解就是常规系统的开发过程。
数据分析咨询请扫描二维码
数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10在信息爆炸的时代,做出正确的数据分析方法选择变得尤为重要。这不仅影响到数据分析的准确性,更关系到最终的决策效果。本文将详 ...
2024-11-10