大数据时代,运营商的身法与心法
我始终相信,无论在哪里,有什么职位,做什么工作,如果内心没有足够的动力、期盼与爱的话,一个人是无法产生强烈的使命感与责任感的,或者说,没有幸福感。
最近读完了《幸福的方法》,对书中一段话非常有感触:"忙碌奔波型是未来的奴隶,享乐主义型是现在的奴隶,而虚无主义型则是过去的奴隶。"在运营商工作的我们都经历过从通信业黄金十年带来的"金饭碗"、行业遭遇"高原平台期"的铜饭碗,甚至全社会"人人得而诛之以后快"的"纸饭碗",无论是企业还是身处其中的个人,都在感受着巨大的压力与阻力。
于是,一些人选择了"享乐主义"式生存,日复一日在单位混日子;一些人则选择了"虚无主义"式生存,沉浸在过去的辉煌,躺在功劳簿上过日子;还有一些人选择"忙碌奔波"式生存,开不完的会、做不够的汇报、写不尽的方案,虽终日忙忙碌碌却无所作为。正是如此,才有了我上篇文章中写到的"四种人"——那些想走又能走的人最终选择了离开这里,那些想走却不能走的整日抱怨体制,那些不想走也不能走的昏昏度日,剩下那些能走却不想走的痛苦挣扎……
一、运营商正在经历什么?
借用双城记那段经典开场白:这是一个最好的时代,这是一个最坏的时代。对于运营商这样天生依靠人口红利、规模红利的传统企业,未来的日子或许并不好走。无论是从媒体的口诛笔伐,还是用户的人人喊打,亦或是员工的纷纷出离,种种迹象都在表明这个行业早已从大象快跑的“神坛”跌落,变得迟钝、缓慢甚至有些狼狈了。
可十年前绝不是这样。三十年前更加不是。
《大跨越:中国电信业三十春秋》的开篇语这样写道:从经济瓶颈到社会先导,从全球末游到用户总量世界第一,改革开放三十年中国电信业实现了举世瞩目的大跨越!这一切是怎么得来的?这本生动再现改革开放30年来中国通信业辉煌历程的著作选择了两个有意义的时间点,1978年跟2008年,前者是中国正式吹响改革开放号角的关键一年,而后者则是代表了通信业黄金十年的关键一年。
字里行间都可以读到中国通信业经历过怎样的辉煌,可以感受到从业者那种由衷的自信与荣耀。时代巨变,昔日巨头创造了比以往更加令人瞩目的经营业绩,却在政治地位以及行业形象上连连败走麦城。
时至今日当我们再次谈论运营商,你想到了什么?是财务报表上无比闪耀的光辉业绩,还是面对行业内外竞争暗战的困惑焦虑;是建成一张张4G、4G 网络的骄傲欣喜,还是管道化、低值化、边缘化的郁闷心酸;是对KPI下多少就能完成多少的自信得意,还是对基层不断涌现离职潮的始料未及。
是运营商真的做错了什么吗?可能并不是。
放眼看看这个时代吧!这是一个在和同行不断抗衡,却无奈被OTT抄了后路的时代;一个到处充斥着机会,细看时却满目危机的时代;一个传统大机构失势瓦解,个人自由连接全面崛起的时代……
这是一个唯变不破的大时代。在这个时代里,竞争对手变了、游戏规则变了、用户习惯也变了,曾经习以为常的一切突然间发生了天翻地覆的变化。话音、短信这些传统业务正在加速下滑,流量虽然成为新的增长点,却不得不面临着“提速降费”的巨大压力。可以说,在这样的时代背景下,运营商像是被困的巨兽,想挣扎却又充满无力感,想改变却又害怕不确定,想突破却又找不到突破口……
唯一的方法大概就剩下三个字:豁出去。
二、运营商该怎么办?
对于眼下的运营商来说,出路无非两条,要么精耕存量客户,挖掘更大的价值点;要么开辟新市场,寻找行业的破局地。关于精耕存量市场,已经有太多这方面的文章,这里不再赘述。我想重点谈谈新市场。
1.新市场在哪里?
日前,互联网教父、科技商业预言家的凯文·凯利在斯坦福大学进行长达3小时的分享,畅谈他对未来20年重大科技商业潮流的见解。我对其中一个观点很感兴趣,他说不管你现在做什么行业,你做的生意都是数据生意。
数据!
无论是风生水起的移动互联网,还是改变世界的芸芸众生,他们都在通过运营商的网络来获取信息。
2014年三月在北京举行的一场大数据产业推介会上,阿里巴巴集团创始人马云在主题演讲中发表了他的观点——“人类正从IT时代走向DT时代。IT时代是以自我控制、自我管理为主,而DT时代,它是以服务大众、激发生产力为主的技术。”
我们都知道,今年的双11全球狂欢节中,阿里巴巴天猫用时不到12小时就打破了去年创下的571亿元的交易额,最终将记录锁定在912亿,其中无线交易占比71%,全球产生成交的国家和地区达到205个。
巨量交易额的背后是什么?是阿里越来越强大的供货和物流系统?还是传统零售业的全面没落?其实都不是的。我以为这背后体现了阿里巴巴强大的数据分析和挖掘能力。在这样的购物节中,最重要的问题是商家要备多少货?而这可以通过平台历史销售大数据,预测货品需求,为商户提供库存依据,提升库存效率和有效性。
而在百货商店时代,购物数据只有通过人工才有可能统计完并且不一定准确,但是阿里巴巴会把每个人的历史购物和浏览数据都留在云上。因此,淘宝可不光是一个电商平台,更是顾客的大数据平台。
阿里巴巴集团副总裁涂子沛在讲到这个概念的时候举了一个更容易理解的案例:请你预测全国哪些地区会有更多的二孩出生?按照传统的数据统计,估计只能依靠人口普查、各地市区县统计部门的层层上报,不但会有偏差而且还会滞后。而在阿里巴巴,只需要统计哪些区域的孕婴用品销量激增就可以了,不但真实而且更加便捷。
运营商也是一样的。你以为运营商只是通信管道的提供者?其实或许还是信息适配的服务商。在过去,我们使用的文件、文件夹、桌面这些东西都是停留在本地的。我还记得那个时候最好的备份工具大概是移动硬盘或者是蓝光光盘之类的东西。而进入网络时代之后,数据就出现在网页上、链接里。现在的云上有标签、有流量、有新闻,还有各种各样我们需要的信息。云、数据化才是这个时代的关键词。要知道,这些所有的信息都是通过运营商的网络传输的,就和从淘宝上销售的商品信息一样,除了信息本身,它的发送端和接收端或许才是我们关心的重点。
于是,将合适的信息主动推送给需要的人,就是运营商能提供的大数据服务了。
2.新市场有多大?
中国云计算技术与产业联盟理事长吴基传曾指出:大数据是云计算服务的基础,是构架云平台最基本的要素,没有对海量信息的分析的大数据,就没有为所有信息消费者获取有价值的信息的可能性。
因此在商业界,大数据已经开始成为很多企业的生意。《2015年中国大数据交易白皮书》显示,预计到2020年,中国大数据产业市场规模将超过这个市场去年规模的10倍,由2014年的767亿元扩大至8228.81亿元。
2015年8月19日,国务院常务会议通过《关于促进大数据发展的行动纲要》,这或许意味着,大数据在中国将逐渐步入正轨,进入到顶层设计时代,这无疑将加速经济发展引擎的进一步开发。
从运营商的角度来看呢?以中国移动为例,我们有超过8.2亿用户,110万4G基站,经营分析系统里有10B以上的数据,我们的10086每分钟都有海量用户的呼叫,实际上所有这些动作每天都在产生大量的数据。那么,这些数据到底有多大,集中以后会是个什么效果?
有人曾经做过测算,一个省公司一天的数据要上百P,这些数据集中在一点传输到中国移动(贵安)大数据中心,需要重建一个中国移动的CMNET,也就是中国移动Internet的骨干网。
所以某种意义上来说,运营商拥有采之不尽用之不绝的数据富矿,站在金矿上总比无矿可挖强,这也是我判断运营商或许会在大数据时代“触底反弹”的依据之一。
3.还有什么不确定因素?
虽说前途可期,但毕竟是一个全新的领域。在新领域就一定有新的游戏规则,也会有相应的规则适应过程。
在过去的几年中,大数据的概念在产业界引发了无数的争议和讨论,甚至长期出现在Gartner的新兴技术成熟度曲线(也称新兴技术炒作周期报告)中。原因非常简单,一项新技术多被谈及概念,虽然在媒体上屡屡曝光,但应用案例寥寥。
因此,大数据越来越被看做是评论界的谈资,而非真正意义上的产业。
在贵阳成立的全球第一家大数据交易所,通过电子系统面向全球提供数据交易服务,计划2020年数据清洗交易量年达1万PB、年总额3万亿。然而,成立至今,这个深孚众望的机构撮合的交易记录也不过3000多笔。“有意愿交易大数据的企业和机构还不多。”交易所工作人员如是说。
除此之外,还有几个关键不确定因素在影响着大数据产业发展。
A.技术能力不足。IT作为后端的支撑手段,大量通过外包或采购方式实现,所以在自身软件开发和大数据平台运维、大数据新技术应用、大数据分析挖掘方面能力相当有限。
B.数据“墙”大量存在。很多数据是分散在不同的系统中的,经过长时间的“竖井”式运作,已经形成了难以突破的壁垒。以中国移动为例,B域主要是经营分析数据、O域主要是网络运维数据、M域主要是管理信息数据,但这三域的IT系统分别由三个不同的部门负责,整合难度较大,较难形成“1 1>2”的数据融合效果。
C.组织架构不匹配。目前看,很少有机构会设置专门的部门去集中各种散落的数据,更别提对这些数据进行标准化的管理和维护了。
D.思维观念的滞后。如果说技术、资金、人才方面的劣势都可以通过后天的努力来补足,那么意识层面的缺失就需要相当长时间的培育了。
除了以上说的几点,大数据交易的安全性、定价的合理性、客户信息的保密性,都在一定程度上影响着大数据业务的规模和发展空间。
三、运营商玩大数据的心法与身法
运营商究竟该怎么玩儿大数据呢?窃以为先要回答好三个问题:一是数据在哪里?二是数据放哪里?三是数据怎么用?
1.数据在哪里?
都说我们正在经历一个全新的商业时代——分享经济的时代,消费者正在放弃传统的、效率低下的企业,转而投入分享型企业的怀抱,来获取他们想要的产品和服务。Uber让座驾更好地分享,Airbnb让空闲的房屋更好地分享,八戒网让创意和设计更好地分享……现在看,一切可以分享的都是价值数据。
在分享经济的时代,真正分享的是有效的供需关系。因此,在分享经济中,更重要的其实是创建供需场景,建立供需联系。
数据也是相同的道理。随着移动互联网、云计算、物联网等新一代信息技术的爆发式发展,智能手机、平板电脑、可穿戴设备以及遍布各个角落的传感器,正在越来越多地接入到运营商网络。各种交互数据、传感数据正源源不断从各行各业迅速生成。这些数量庞大、种类广泛、迅速产生和更新的大数据,蕴含着前所未有的社会价值和商业价值。
如何能够有效挖掘并体现出数据的价值是亟待解决的问题。窃以为,关键就在于建立数据使用的场景并搭建数据交易平台。
比如说,城市规划设计院需要对新区进行商业价值评估,可以通过运营商的网格数据分析提供区域人口及经济状况解析;再比如,医疗机构需要在一段时期对药物及医疗设备做储备,可以通过医保报账平台统计该区域的医疗诊断及药物使用情况,预测出该区域可以发生的大规模疾病,从而及时储备相关资源。
重要的是,帮助数据消费者更加迅速有效地找到他们需要的数据,并促成双方交易。
2.数据放哪里?
如此大规模的数据存放在哪里也是考验大数据产业的要素之一。要知道并不是所有的机构都有足够的资源去建设自己的数据中心。而在这方面,运营商恰好可以提供服务。
通信行业有个词叫做“电信级服务”,意思是通信服务要具备不间断运行、大容量、高稳定性、可靠性等特点。而要达到这些条件,就需要完备的QoS保障机制,而其中重要一环就是设施先进、管理规范的通信机房。
因此可以说,在数据机房方面,通信运营商具有先天的优势。
能否将此作为运营商进入大数据市场的切入点呢?开放、合作就成了这个部分的关键词。前文说过,传统机构中有很多数据与信息孤岛,要想打破不断构筑的“数据墙”,首先是要将他们集中化的存储、管理、运营。因此,运营商的高标准数据中心或许只是一个必要而非充分条件,要让源自不同领域的数据发生“化合作用”的前提是将这些数据存放在运营商的数据中心。
ICT基础设施有连接和存储的作用,其产生的数据通过不同的终端存储下来,这些数据在应用程序中使用才会有价值。而运营商同时具备连接和存储两项功能。
面向未来,运营商数据中心将成为网络的中心,构建面向业务的敏捷、柔性、绿色的云IT基础架构将使运营商数据中心成为新一代ICT基础设施的驱动中心。
3.数据怎么用?
运营商现在最大的挑战是什么?是端到端的质量保障不足导致用户体验还不够好吗?是受到OTT业务的冲击导致传统业务快速下滑吗?还是业务量收剪刀差不断加大、投资压力日趋吃紧吗?个人认为都不是的。我们最大的挑战在于用户往往满足于现有的业务。这会让我们产生严重的路径依赖,从而也会形成“自满”情绪。
事实上,运营商现在面临着三大重要转变:一是从关注功能向关注最终用户体验转变;二是从提供语音和带宽向提供丰富、开放的ICT融合信息服务转变;三是从基于人口红利的增长向应用创新增长转变。这三个转变带来了商业模式、运营模式、研发模式和科技创新的转变,将驱动电信行业从封闭走向开放的数字化运营。
数字化运营,至少有三件事可以做:一是盘点数据资产;二是建立计算能力;三是开放数据平台。按照贵州移动芈大伟总经理的思路,运营商大数据发展路径分为1.0、2.0和3.0三个版本。
大数据1.0主要针对运营商内部分析,建设重点以数据整合和能力构建为主,为数据价值发掘奠定基础,重点支撑精准营销和精确建网;大数据2.0主要针对数据价值提升,重点是逐步拓展对内对外数据价值挖掘的能力;大数据3.0主要针对数据变现,聚焦重点客户和行业,构建数据生态系统,逐步凸显外部收入。
目前,运营商在IT系统和网络系统上积累了很多数据资产(当然如果处置不当也可能会变成数据遗产……),通过SDN和NFV等IT技术重构的通信网络,将会形成全新的弹性、智能的网络架构。而网络IT化,就要求建立以云数据中心为核心的网络架构,数据中心将成为ICT基础设施的核心,数据中心的布局和规划决定未来网络的架构,也决定了未来的竞争力。
伴随20多年的互联网发展,掌握未来的“联接一代”和“数字元人”已经长成。相比上一代人,他们的沟通、交友、娱乐、消费、工作、学习等行为方式和思维模式,已经发生深刻的变化,他们对于数字社会和互联网的依赖与生俱来,代表着互联网时代的新消费行为。
运营商新的业务运营系统不再是简单的支持系统,更不是简单的营销界面在线化,而是连接运营商、客户和合作伙伴,连接网络、应用和内容的价值创造系统和生态链系统。传统的线下营业厅或将大幅减少甚至消失,取而代之的,是用户可以全在线模式按需、实时定制享受各项服务,运营商通过大数据分析洞察客户和精确营销,提供更加智能的客户服务。
从购买产品走向购买服务,商业世界的游戏规则正在发生根本上的变化,商家和用户之间的关系从交付那一刻才刚刚开始。
互联网之父劳伦斯·罗伯茨曾讲过:“自网络诞生以来,我们只实现了网速的提高,而在提升网络性能及其他方面毫无进步。”在这方面,运营商正在积极从消费体验出发打造新型的业务运营系统,新系统不再是简单的业支系统和网管系统,更不是简单的营销在线化,而是连接运营商、客户和合作伙伴,连接网络、应用和内容的价值创造系统。
后记
对于运营商来说,传统通信的黄金十年也早已过去,创新增长的白金十年或许才刚开始。站在时代交替的十字路口,我满脑子都只有一个想法——“或许我没有赶上通信业的黄金十年,但我一定不会再错过大数据时代的白金十年”。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28