产业化的大数据分析如何实现?
尽管大数据已成为热门话题,但很多企业并不知道如何正确地步入大数据的怀抱,特别是对于很多中小企业,没有大笔资金以及人力的它们更是手足无措。与此同时,企业在谈到大数据和分析的时候,常常考虑的切实问题是如何从数据当中获得更多的价值,特别是对于拥有不同数据的行业客户而言,其最关心的是如何从数据中提取价值,并驱动其基于业务而非IT进行分析。
近日,美国数据科学家、Taste Analytics创始人及CEO汪晓宇博士表示,无论是大型企业还是中小企业,其面临的困境都大同小异:一是正确的认识大数据和分析,二是企业如何简便地参与进来。
在汪晓宇看来,很多企业特别是大型企业所蕴藏的数据量惊人,但数据分析的关注重点并不是对体量的研究,而是聚焦在数据所产生的价值。
“有些原始数据实际上非常复杂,包括结构化数据、非结构化数据、半结构化数据,如果仅是原始数据,即一堆杂乱无章的信息,大数据带来的实际意义并不大。”汪晓宇表示,企业必须对数据进行架构,找出其中的价值。
除此之外,对于数据本身而言,因为数据获取渠道很多,所以会遭遇很多问题,包括这些数据是否真实,是否完整,是否有冲突,是否存在不确定性等,这都需要一一确认。
同时,企业还需要考虑数据的同理化和社会化,毕竟数据来源不同,但企业需要用一体化的建模方式对待数据、分析数据,这样才能使最终用户得到有价值的产品或信息。
Taste Analytics创始人及CEO汪晓宇博士
跨过原始数据的障碍后,在数据分析部分,仅在最开始数据清洗环节便面临不小的挑战。如果手动地进行信息处理,有报告指出,光是数据清洗就将耗费分析师超过80%的时间。
汪晓宇表示,在这个过程中,业界有种声音是通过机器学习进行分析建模,这样尽管能解决部分问题,但因为机器学习算法可能非常僵硬、晦涩,分析容易受限并忽略整体情况,缺乏了人类的智能,而这样的结果并不能发挥出数据的真正意义。
所以在汪晓宇看来,大数据分析与其说是科学(计算模型),还不如说是艺术(需要人类分析的智能)。
一个著名的人机智能PK案例是,1997年国际象棋冠军Garry Kasparov和深蓝(计算机)大战,最后败给深蓝。但在2005年的人工智能和“增强智能”(Augmented Intelligence)的大战中,“增强智能”优势体现出来了,一位大师利用1套象棋程序打败了象棋计算机Hydra。
“如果拥有人工智能,或得到计算机辅助,作为人的我们就可以进行更好的协作,并得出更好的决策。所以在大数据分析中,以人为中心的转变,应从数据操作转移到决策本身。”汪晓宇表示。
在大数据及分析的过程中,人成为核心,并应将关注点转移到决策部分。那么对于企业,如何得到这样符合商业要求的分析结果,从而配合人的决策实现“增强智能”呢?
汪晓宇表示,现在Taste Analytics已经有简便的方式向企业提供所需的数据。他表示,可以在采用虚拟化技术的基础上,通过三方面助力企业进入大数据。
一是分析工具的采用,使得企业不用亲自去完成所有的数据清洗等过程。同时考虑到B2B的商业模式应该由业务驱动而非IT,所以可以在业务环境中部署分析工具,从而实现企业运转的灵活及敏捷性。
二是提供按需的数据,企业无需如过去一样耗费很大精力建立数据之间的相关性,而是由平台提供相关任务的数据。
三是以用户为中心的分析,决策者通过正确的提问,并可以得到与其业务环境相关的回答。
目前Taste Analytics正在这么做,以使得分析结果符合客户的商业需求,同时“面向不同的客户提供不同的工具,只有这样才能帮助客户在各异的行业中发掘洞察。”
汪晓宇强调,在未来企业的B2B商业模式中,业务增长是关键,而基于大数据的业务分析正符合了时代需求,同时通过人类和计算机的互动,使得围绕最终用户的商业分析成为可能。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21