大数据仍然离不开人的赋予
大数据意义重大,这是毋庸置疑的一件事,但最终当我们真正弄清楚如何充分利用大数据时,也许它并没有开始认为的那么了不起。现在的我们处于一个比较混乱的中间时段,一方面我们认识到了这些数据的价值,而另一方面大多数组织机构和政府并不知道如何利用这些数据以充分发挥其作用。
在最近一期的《经济学人》,有两篇文章描述了大数据发展的现状。首先我们要说的是《打破常规》( Out of the box )这篇文章,该文谈到开放数据的承诺,这个承诺到现在仍未实现。文章认为,开放数据不仅可以促进透明度的提升,还可以作为一个商业创新的平台,它在一些公司的作用便是如此,如 Zillow 和 Garmin,后两者分别是基于公开的房地产数据和基于 GPS 技术的公司。
该文章称,在美国政府数据共享网站 Data.gov 上,一共发布了来自 170 个数据源的 20 万个数据集。所有这些数据不仅让创业公司能够蓬勃发展,那些向公众开放的信息也让公民和监管机构可以更好地进行监管并根除腐败。不过,虽然作者在文章中谈到公开数据的很多好处,但同时也承认我们离真正了解这些数据能做什么还差一步,并且我们需要更多的公开数据,以便让这些数据真正发挥出它们的作用。
在同一期的《经济学人》杂志上还有另一篇关于大数据的文章,这篇名为《德国发展数字化吗?》( Does Deutschland do digital? )的文章谈论了制造业的无常性以及德国能否跟上变化的问题。由传感器和物联网所推动的新兴浪潮正迫使那些传统的德国制造商向软件和数据公司转型,在后者的领域里,由传感器产生的数据可能比机器本身更有价值。
在《经济学人》发行的纸质版中,这两篇文章中间仅隔了一页,它们用不同的方式展现出现如今我们对于大数据所感到的困惑。这就好比我们意识到存在着某物,我们也知道它的重要性,但就是找不到充分利用它的方式。
数据不是孤立的
也许原因在于我们太相信能用技术手段解决我们的各种问题。我们一直相信大数据可以帮助企业做出更明智的决策。在医疗保健领域,它可以帮助我们的医生和医疗专业人士更好地进行诊断并且找到最合适的治疗方法。在体育运动领域,它可以帮助我们最喜欢的球队挑选出最好的球员。在政府方面,通过开放信息,能够让政府的透明度提升到承诺高度,贪污腐败的政府官员将无所遁形。此外,大数据还有助于发现潜在的罪犯。
从巴黎最近发生的恐怖袭击可以看出,有时候并不是我们收集信息多寡的问题。正如娜塔莎·洛马斯(Natasha Lomas)在袭击发生后 为 TechCrunch 所写的一篇文章所说 ,也许事件的发生不仅仅与数据有关。也许有关系的是人们如何处理这些数据:
另一个残酷的政治真相是,有效的反恐政策需要在当地实体资源上花钱——向各地派出更多的政府特工 ,融入 当地社区,让他们在那里获取人们的信任并收集情报。
我认为洛马斯是触动到了一些东西。我们觉得科技是问题的答案,但其实它只是人类手中的一个工具。看过《法律与秩序》剧集的人就会知道,虽然在犯罪现场你可以获得 DNA 证据,但是身为警探仍然必须辛勤工作,找到这些数据所指向的人。如果没有人去连结这些信息点,那么这些数据也就没有用处。
这一点同样适用于大规模的政府监控。当然你可以收集到任何你想要的数据,但如果缺少传统方式的检测来帮助人们去理解这些数据,人们会很难知晓其中的意义。
无论是阻止恐怖袭击,还是为找到跟隔壁企业竞争的最好方法,无不是如此。数据是中立的。只有你知道如何将这些数据联系在一起,否则它对你而言没有帮助。虽然计算机可以帮人们更快地搜集和处理数据,但是不管我们自己信不信,要让计算机为我们从数据中提取意义还有很长的一段路要走。
人机合作
麻省理工学院教授安德鲁·麦克菲(AndrewMcAfee)和艾瑞克·布林约夫森(Erik Brynjolfsson)在他们合著的《第二次机器革命》( The Second Machine Age )中讲述了一个关于 IBM 计算机深蓝的故事, 1997 年深蓝在比赛中击败了当时世界上最好的人类国际象棋手 。2005 年,一组业余的国际象棋选手在三台计算机的帮助下,击败了这台击败过世界上最好棋手的机器。
这件事表明,作为一种工具,技术可以被人们用来提高自身能力,并且充分发挥出计算机和技术的作用,这些都是我们自己创造的机器和技术。如果你对此有所怀疑,可以参考美国国防部的想法,他们差不多就是按照这个思路认为未来最有效的战争策略是 人类部队与机器的联合 。
尽管科技进步的演变速度正变得越来越快,但我们对于自身技术的先进性仍然存在高估。很显然,对于所收集数据的理解仍然离不开人的帮助。
如果我们可以高效地完成这个任务,最终这些数据会让我们人类变得更聪明,让我们生活得更安全和更健康。我们只需记住数据是我们达到目的的一种手段,而不是目的本身。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21