大数据仍然离不开人的赋予
大数据意义重大,这是毋庸置疑的一件事,但最终当我们真正弄清楚如何充分利用大数据时,也许它并没有开始认为的那么了不起。现在的我们处于一个比较混乱的中间时段,一方面我们认识到了这些数据的价值,而另一方面大多数组织机构和政府并不知道如何利用这些数据以充分发挥其作用。
在最近一期的《经济学人》,有两篇文章描述了大数据发展的现状。首先我们要说的是《打破常规》( Out of the box )这篇文章,该文谈到开放数据的承诺,这个承诺到现在仍未实现。文章认为,开放数据不仅可以促进透明度的提升,还可以作为一个商业创新的平台,它在一些公司的作用便是如此,如 Zillow 和 Garmin,后两者分别是基于公开的房地产数据和基于 GPS 技术的公司。
该文章称,在美国政府数据共享网站 Data.gov 上,一共发布了来自 170 个数据源的 20 万个数据集。所有这些数据不仅让创业公司能够蓬勃发展,那些向公众开放的信息也让公民和监管机构可以更好地进行监管并根除腐败。不过,虽然作者在文章中谈到公开数据的很多好处,但同时也承认我们离真正了解这些数据能做什么还差一步,并且我们需要更多的公开数据,以便让这些数据真正发挥出它们的作用。
在同一期的《经济学人》杂志上还有另一篇关于大数据的文章,这篇名为《德国发展数字化吗?》( Does Deutschland do digital? )的文章谈论了制造业的无常性以及德国能否跟上变化的问题。由传感器和物联网所推动的新兴浪潮正迫使那些传统的德国制造商向软件和数据公司转型,在后者的领域里,由传感器产生的数据可能比机器本身更有价值。
在《经济学人》发行的纸质版中,这两篇文章中间仅隔了一页,它们用不同的方式展现出现如今我们对于大数据所感到的困惑。这就好比我们意识到存在着某物,我们也知道它的重要性,但就是找不到充分利用它的方式。
数据不是孤立的
也许原因在于我们太相信能用技术手段解决我们的各种问题。我们一直相信大数据可以帮助企业做出更明智的决策。在医疗保健领域,它可以帮助我们的医生和医疗专业人士更好地进行诊断并且找到最合适的治疗方法。在体育运动领域,它可以帮助我们最喜欢的球队挑选出最好的球员。在政府方面,通过开放信息,能够让政府的透明度提升到承诺高度,贪污腐败的政府官员将无所遁形。此外,大数据还有助于发现潜在的罪犯。
从巴黎最近发生的恐怖袭击可以看出,有时候并不是我们收集信息多寡的问题。正如娜塔莎·洛马斯(Natasha Lomas)在袭击发生后 为 TechCrunch 所写的一篇文章所说 ,也许事件的发生不仅仅与数据有关。也许有关系的是人们如何处理这些数据:
另一个残酷的政治真相是,有效的反恐政策需要在当地实体资源上花钱——向各地派出更多的政府特工 ,融入 当地社区,让他们在那里获取人们的信任并收集情报。
我认为洛马斯是触动到了一些东西。我们觉得科技是问题的答案,但其实它只是人类手中的一个工具。看过《法律与秩序》剧集的人就会知道,虽然在犯罪现场你可以获得 DNA 证据,但是身为警探仍然必须辛勤工作,找到这些数据所指向的人。如果没有人去连结这些信息点,那么这些数据也就没有用处。
这一点同样适用于大规模的政府监控。当然你可以收集到任何你想要的数据,但如果缺少传统方式的检测来帮助人们去理解这些数据,人们会很难知晓其中的意义。
无论是阻止恐怖袭击,还是为找到跟隔壁企业竞争的最好方法,无不是如此。数据是中立的。只有你知道如何将这些数据联系在一起,否则它对你而言没有帮助。虽然计算机可以帮人们更快地搜集和处理数据,但是不管我们自己信不信,要让计算机为我们从数据中提取意义还有很长的一段路要走。
人机合作
麻省理工学院教授安德鲁·麦克菲(AndrewMcAfee)和艾瑞克·布林约夫森(Erik Brynjolfsson)在他们合著的《第二次机器革命》( The Second Machine Age )中讲述了一个关于 IBM 计算机深蓝的故事, 1997 年深蓝在比赛中击败了当时世界上最好的人类国际象棋手 。2005 年,一组业余的国际象棋选手在三台计算机的帮助下,击败了这台击败过世界上最好棋手的机器。
这件事表明,作为一种工具,技术可以被人们用来提高自身能力,并且充分发挥出计算机和技术的作用,这些都是我们自己创造的机器和技术。如果你对此有所怀疑,可以参考美国国防部的想法,他们差不多就是按照这个思路认为未来最有效的战争策略是 人类部队与机器的联合 。
尽管科技进步的演变速度正变得越来越快,但我们对于自身技术的先进性仍然存在高估。很显然,对于所收集数据的理解仍然离不开人的帮助。
如果我们可以高效地完成这个任务,最终这些数据会让我们人类变得更聪明,让我们生活得更安全和更健康。我们只需记住数据是我们达到目的的一种手段,而不是目的本身。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29