网站分析的数据来源
Avinash Kaushik在他的《Web Analytics》一书中将数据的来源分为4部分:点击流数据(Clickstream)、运营数据(Outcomes)、调研数据(Research/Qualitative)和竞争对手数据(Competitive Data)。点击流数据主要指的是用户浏览网站时产生的数据;Outcomes我更习惯叫做运营数据,主要指用户在网站中应用服务或者购买产品时记录下来的数据;调研数据主要是网站通过某些用户调研手段(线上问卷或者线下调研)获取的一些定性数据;Competitive Data直译为竞争对手数据可能不太合适,因为根据Avinash Kaushik的阐述,更像是跟网站有业务关系或竞争关系或存在某种利益影响的一切网站的可能的数据来源。
在获取上述几类数据的同时,也许我们还可以从其他方面获取一些更为丰富的数据。下面是我对网站分析数据获取途径的整理:
网站内部数据
网站内部数据是网站最容易获取到的数据,它们往往就存放在网站的文件系统或数据库中,也是与网站本身最为密切相关的数据,是网站分析最常见的数据来源,我们需要好好利用这部分数据。
服务器日志
随着网站应用的不断扩张,网站日志不再局限于点击流的日志数据,如果你的网站提供上传下载、视频音乐、网页游戏等服务,那么很明显,你的网站服务器产生的绝不仅有用户浏览点击网页的日志,也不只有标准的apache日志格式日志,更多的W3C、JSON或自定义格式的输出日志也给网站分析提供了新的方向。
网站分析不再局限于网页浏览的PV、UV,转化流失等,基于事件(Events)的分析将会越来越普遍,将会更多的关注用户在接受网站服务的整个流程的情况:上传下载是否完成,速度如何;用户是否观看的整部视频,视频的加载情况;及用户在玩网页游戏时的操作和体验分析等。Google Analytics已经支持了基于事件的分析——Event Tracking,通过JS的动作响应获取数据,但是还存在着一定的局限性。
网站分析工具
当然,通过网站分析工具获得数据是一个最为简便快捷的方式,从原先的基于网站日志的AWStats、webalizer,到目前非常流行的基于JS Tags的Google Analytics、Omniture的SiteCatalyst,及JS和网站日志通吃的WebTrends。通过网站分析工具获得的数据一般都已经经过特殊计算,较为规范,如PV、UV、Exit Rate、Bounce Rate等,再配上一些趋势图或比例图,通过细分、排序等方法让结果更为直观。
但通过网站分析工具得到数据也不远只这些,上面的这些数据也一样可以通过统计网站日志获得,但网站分析工具的优势在于其能通过一些嵌入页面的JS代码获得一些有趣的结果,如Google Analytics上的Overlay或者也叫Click Density——网站点击密度分布,及一些其它的网站分析工具提供的点击热图,甚至鼠标移动轨迹图。这些分析结果往往对网站优化和用户行为分析更为有效。
数据库数据
对于一般的网站来说,存放于数据库中的数据可以大致分为3个部分:
网站用户信息,一般提供注册服务的网站都会将用户的注册账号和填写的基本信息存放在数据库里面;
网站应用或产品数据,就像电子商务的商品详细信息或者博客的文章信息,如商品信息会包含商品名称、库存数量、价格、特征描述等;
用户在应用服务或购买产品时产生的数据,最简单的例子就是博客上用户的评论和电子商务网站的用户购买数据,购买时间、购买的用户、购买的商品、购买数量、支付的金额等。
当然,这一部分数据的具体形式会根据网站的运营模式存在较大差异,一些业务范围很广,提供多样服务的网站其数据库中数据的组合会相当复杂。
其它
其它一切网站运营过程中产生的数据,有可能是用户创造,也有可能是网站内部创造,其中有一大部分我们可以称其为“线下数据(Offline Data)”。如用户的反馈和抱怨,可能通过网站的交流论坛,也有可能通过网站时公布的客服电话、即时通讯工具等,如果你相信“客户中心论”,那么显然对于这些数据的分析必不可少;另外一部分来源就是网站开展的线下活动,促销或推广,衡量它们开展的效果或投入产出,以便于之后更好地开展类似的线下推广。
外部数据
网站分析除了可以从网站内部获取数据以外,通过互联网这个开放的环境,从网站外部捕获一些数据可以让分析的结果更加全面。
互联网环境数据
即使你的网站只是一个很小的网站,但如果想让你的网站变得更好,或者不至于落后于互联网的前进脚步,那么建议你关注一下互联网的发展趋势。可以上Alexa查一下互联网中顶级网站的访问量趋势;看看comScore发布的数据或者199IT–中国互联网数据中心网站上的各种数据分析和研究资料;如果经营电子商务网站,淘宝数据中心也许会让你感兴趣。
竞争对手数据
时刻关注竞争对手的情况可以让你的网站不至于在竞争中落伍。除了在Alexa及一些其他的网站数据查询平台以外,直接从竞争对手网站上获取数据也是另外一条有效的途径,一般网站会出于某些原因(信息透明、数据展示等)将自己的部分统计信息展现在网站上,看看那些数据对于掌握你的竞争对手的情况是否有帮助。
合作伙伴数据
如果你有合作的网站或者你经营的是一个电子商务网站,也许你会有相关的产品提供商、物流供应商等合作伙伴,看看他们能为你提供些什么数据。
用户数据
尝试跟踪用户的脚步去看看他们是怎么评价你的网站的。如果你的网站已经小有名气,那么尝试在搜索引擎看看用户是怎么评价你的网站,或者通过Twitter、新浪微博等看看用户正在上面发表什么关于你的网站的言论。
当然通过用户调研获取数据是另外一个不错的途径,通过网站上的调查问卷或者线下的用户回访,电话、IM调查,可用性实验测试等方式可以获取一些用户对网站的直观感受和真实评价,这些数据往往是十分有价值的,也是普通的网站分析工具所获取不到的。
在分析网站的外部数据的时候,需要注意的是不要过于相信数据,外部数据相比内部数据不确定性会比较高。网站内部数据即使也不准确,但我们至少能知道数据的误差大概会有多大,是什么原因造成了数据存在误差。而外部数据一般都是有其他网站或机构公布的,每个公司,无论是数据平台、咨询公司还是合作伙伴都可能会为了某些利益而使其公布的数据更加可信或更具一定的偏向性,所以我们在分析外部数据是需要更加严格的验证和深入的分析。而对于用户调研中获取的数据,我们一般会通过统计学的方法检验数据是否可以被接受,或者是否满足一定的置信区间,这是进行数据分析前必须完成的一步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30