数据可视化 真正可以遵循的制图技巧
可视化有许多“规则”。有的是实际的规则,有的则是帮助你做出选择的建议。如果是出于数据的要求,而且你也知道该怎么做,那么许多实际的规则也不必遵守。
但是,的确有一些规则不应该违背。这些规则通常是用于一些特定种类、几乎只能用特定方式阅读的图表。当这些规则被打破,阅读过程中,数据有可能被误读。这会有点棘手。
条形图的基线必须从零开始
条形图依赖长度来呈现数据。短的条块代表较低的值,长一些的则表示较高的值。条形图的原理就是通过比较条块的长度来比较值的大小。
当基线被改变了,视觉效果也就扭曲了。
举例来说,请看上图。左边第一幅条形图比较了两个值:50和100,它有一条并且它有一条以零为起点的基线。很好。代表数值100的条块长度正好是数值50的两倍长,为100正好也是50的两倍大小。
但当你把基线变为一个更高的、非零的值时,第一个条形的长度变短了,而另外一个条形的长度却没有变。此时值为100的条形不再是值为50的条形的两倍长。以此类推,当最后左边代表数值50的条形彻底消失了,意味着100无限地大于50了。
条形图的基线必须从零开始。
例:这张条形图是经福克斯新闻准许使用的。
3月31日目标的值为7,066,000,比6,000,000高17.8%,然而第二个条形几乎是第一个条形长度的三倍。
有人也许会反驳说,这张图的重点在于两个值的差而非这两个值本身。即便如此,用条形图来表示本身就是一个错误的选择。使用时间序列来呈现月累积数也许会更好。
不要过分热衷于饼图
有些人认为,应该完全避免饼图。他们也许是对的,也许又不是。有些人也许会说,使用饼图完全是一种不可原谅的错误。对此,我不同意。不管怎样,事实情况是人们仍然使用饼图,所以我们至少可以争取正确地使用它们。
避免过度切割饼图,否则最终对它的阅读将难以为继。
那么多少是“太多”?这是一个判断力的问题。不过,如果已经很难从图中看出其中一块扇形是另一块两倍大,或者好几个较小的扇形区域看起来差不多大时,在扇形切割上面就该收手了。此时可以考虑把较小的类目归入一个更大的:“其他”。圆环图也是一样。
同时也考虑一下用其他种类的图表来表示比例。
不要太依赖于饼图。
例:这张饼图来自维基百科,它展示了国家的不同区域。
左边这张饼图中已经切割了许多块,但旁边另分离出一张饼图,显示了左图中看不清楚的更小国家的情况,以此来提供更多的信息。有许多方式可以展示这组数据,比如树状图、按照数据比例制作的图标,或者就用普通的地图。单薄的饼图只适用于显示只有几组值的数据。
尊重部分所占整体的比例
相较于呈现数值,有些图更着重于表现部分与整体的关系,它们表现的数据是部分所占整体比例。比如,堆积式条形图,堆积区域图,树状图,马赛克图,圆环图以及饼图。在这些图表中,每一个部分都表示一个独立的、不重叠的比例。
关于这一条,最常见的错误发生在调查问题允许多选时。比如说:“你上周使用了哪一种交通工具?可以多选。”这样的话,在人们多选的问题上就会出现比例的重叠,不同选项的百分比之和大于一。为了避免这种情况,你不能直接把比例做成统计图。
例:这张饼图来自福克斯新闻下属机构,它表现了三个不属于同一个整体的百分比。
每一个值都是一个单独的整体,因此在这一例中,用三个堆积式条块(或普通的条块)会更直观地表现每个值的比例。
展示数据
让读者看到数据,这是可视化的重点。如果数据的呈现不够清晰,就违背了做图表的初衷。这常常是因为一张图里的数据太多,于是读者的兴趣就被分散了。
这是一个经典的“绘图过度”的问题,相关的研究有很多。但是对于基本的图表,也有一些简单的解决方式。
首先是可以改变符号的大小,这样上图中的小圆点(或者是其他的符号)就不会占据太多空间。为了让数据直观清晰,主要要增加空白。
调节透明度,多层次的图案就不会被覆盖。
通过取样或者把对数据进行分类的方式,把总体分成几个更小的子群。从中,你可以采取小而多的方式,这样每张表里的信息就会少一些。
数据进行再统计及分门别类。
总而言之,更好地呈现数据。
例:这张图展示了金州勇士队在2008-09赛季的每个投篮。
这张图最终形成了一个球场的形状,并得出了对于球员们投篮最多的地点的一个小结论——近框,中距离,以及三分球。但是它们之间的差距是很小的,读者并不能看清真正量级上的差距。
数据聚合法将有助于解决此类问题。
解释编码
通过一定的形状、颜色和几何图形的结合,将数据呈现出来。为了让读者能读清楚,图表设计者就要把这些图形解码回数据值。经典的例子是没有标注的坐标轴。
有时编码不需要解释。比如说,读者也许知道怎样读条形图,就不必解释条的长度表示的是值的大小了。但是设计者的确应该解释数据,也就是图表的单位和主题。
所以标明坐标轴代表的含义。要给读者提供线索或图例,解释图表。
例:这个错误标注的图表来自温尼伯太阳报:
我们要是能知道这是统计关于什么的问题就好了。
大功告成
搞定了。最后一件事就是确保你没有违反最基础的可视化规则——这都是关于理解数据转换可视化图形的过程。如果能弄明白怎数据是如何转换成几何图形的,你就可以创作自己的可视化作品了。但对于特定的几种只能用特定方式来读取的图表,是没有什么改变的余地的。
总之,一定要学会把数据转换成可视化图形。然后真正理解可视化制图中“规则”和“建议”的不同之处。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13