正确使用手游数据分析的7个方法
知识就是力量,这对于手游开发商们来说尤其重要。有数据和分析情况下做出的决定总会比毫无了解好的多。通过数据分析,你可以清晰的看到自己手游的表现,也可以知道如何增加游戏的价值并且能提前看到未来发展中的挑战。
以下是手游营销平台Leadbolt公司CEO Dale Carr给出的7个方法,可以通过数据分析帮助手游开发商们提高用户参与度、增加收入并且帮助你的手游成功:
1.节约时间和资源
开发商们一定要知道玩家们最常使用的是哪些功能、以及这些功能被使用的频率,因为你可以通过专注研发和分析让游戏变得更优秀,让你把时间和资源用在最合适的地方。
一个优秀的分析工具可以帮助你追踪特定的用户行为,每一次用户在游戏中使用特定功能的习惯都可以被追踪到。如果你可以把这些数据按照特定的类别统计分析,比如玩家们在游戏中购买武器的次数、或者说在特定日期、周或者长期之内某些功能被使用频率。如果这些数据显示,没有人使用某一个功能,你在未来的研发中就可以避免做无用功了。
2.把游戏做到易于上手
用户量:要知道你的游戏是否易于上手,可以从用户体验的不同阶段看出来。比如,如果你的游戏中,玩家们还没有完成关卡就离开了游戏,那么你就可以通过玩家们离开游戏的具体原因。一旦确定了问题的来源,比如特定的手游设备上有BUG而不能完成关卡,那么这个问题就好解决了。手游分析数据的使用可以让开发商们很轻易的解决一些游戏中的问题,带来优秀的用户体验,这样就可以提高用户的参与度。
用户参与度:这个数据也可以了解你的游戏难度做的是否恰当。让用户体验游戏是一回事,但他们是否会经常玩,却是另外一回事。有了手游数据分析,你可以追踪用户的使用频率,还可以了解他们每次的游戏时长,这个数据可以清楚的告诉你所做的决定是否正确,尤其是在游戏设计和功能方面。
3.追踪ROI知道谁是VIP
有句话说的好,不会花钱的人不会挣钱。这句话的意思是,你要把资金和资源用在合适的地方才能够带来最大的ROI。如果你一直都不优化自己的市场营销渠道,那么你很可能不必要的浪费了很多资金。以下是追踪手游ROI的一些基本过程:
安装追踪:在玩家们体验你的游戏之前,你一定想知道你的用户从哪儿来。换句话说,你想要知道自己的潜在用户来自哪个渠道,哪些广告网络可以给你带来最多的新用户。更进一步的话,了解哪个渠道带来的用户LTV最高,你就可以知道哪些渠道的用户是最有价值的。
研究结果:通过对市场营销渠道的分类和追踪,你可以找出哪些活动在哪个渠道表现最好,哪些可以带来最多的收入,对于收益较低的渠道,你就可以节约一部分开支。了解用户的LTV是追踪ROI最佳的方式之一,这听起来可能比较浅显,但有些用户对于你来说是非常重要的(VIP)。了解哪些用户消费最多,或者了解哪些用户忠实度最高,这样你可以使用不同的市场营销方式提高他们的参与度和LTV。
4.体验量和使用率
对于手游开发商们来说,了解游戏的体验量与使用率之间的差异是非常重要的。在体验游戏的用户中,只有一部分人会打开并经常使用,这也是激励型体验措施并非最佳方案的原因之一,虽然激励型方式可以增加你的游戏体验量,但如果用户只是体验了游戏,或者只进入过一次游戏,那很可能他们对你的游戏没有兴趣,这样的话,你的平均用户LTV就会大幅下滑。
5.做好市场营销策略
不要跟着感觉走。要做一个带来最佳ROI的市场营销策略,你需要借助可靠的数据、精确的分析,这样可以帮助你制定清晰的目标,如果你自己都不知道用户使用哪个功能最多,不了解哪些数据对你最有价值,那么你再多的市场营销费用也很可能是打水漂。
6.检测并解决特定设备上的问题
如果可以实现只提供一个游戏版本就可以完美适配所有的机型,让用户们都有同样优秀的体验,手游开发商们就不会有这么多的问题,但这种情况从来不会发生,而且也是所有开发商都心知肚明的。然而,开发商们并非无能为力,我们可以找到发生问题的设备,找到哪些功能受到了影响,提供报错功能是非常重要的。
7.提高付费转化率
了解哪些是玩家们消费时考虑最主要的因素,可以帮助你提高收入表现。虽然推出一个伟大的手游可以让你非常出名,但只有获得了收入,你才可能把游戏做到更好,更不用说养家糊口了。通过对单个用户的游戏行为和IAP活动追踪,你可以找到玩家们在哪些方面消费最多,哪些促销活动可以带来销售收入的提高,诸如此类。
从提高游戏的使用率到提高转化率带来更高收入,手游数据是可以帮助开发商做出更好决策的工具,跟着感觉走有时候可能会有用,但如果有了准确的数据分析,你可能会更成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31