
聚类算法之K均值
有时候,我们只有训练样本的特征,而对其类型一无所知。这种情况,我们只能让算法尝试在训练数据中寻找其内部的结构,试图将其类别挖掘出来。这种方式叫做无监督学习。由于这种方式通常是将样本中相似的样本聚集在一起,所以又叫聚类算法。本文,中颢润将介绍一种最常用的聚类算法:K均值聚类算法(K-Means)。
1、K均值聚类
K-Means算法思想简单,效果却很好,是最有名的聚类算法。聚类算法的步骤如下:
a:初始化K个样本作为初始聚类中心;
b:计算每个样本点到K个中心的距离,选择最近的中心作为其分类,直到所有样本点分类完毕;
c:分别计算K个类中所有样本的质心,作为新的中心点,完成一轮迭代。
通常的迭代结束条件为新的质心与之前的质心偏移值小于一个给定阈值。
下面给一个简单的例子来加深理解。如下图有4个样本点,坐标分别为A(-1,-1),B(1,-1),C(-1,1),D(1,1)。现在要将他们聚成2类,指定A、B作为初始聚类中心(聚类中心A0,B0),指定阈值0.1。K-Means迭代过程如下:
step 1.1:计算各样本距离聚类中心的距离:
样本A:d(A,A0) = 0;d(A,B0) = 2;因此样本A属于A0所在类;
样本B:d(B,A0) = 2;d(B,B0) = 0;因此样本B属于B0所在类;
样本C:d(C,A0) = 2;d(C,B0) = 2.8;;因此样本C属于A0所在类;
样本C:d(D,A0) =2.8; d(D,B0) = 2;;因此样本C属于B0所在类;
step 1.2:全部样本分类完毕,现在计算A0类(包含样本AC)和B0类(包含样本BD)的新的聚类中心:
A1 =(-1, 0); B1 = (1,0);
step 1.3:计算聚类中心的偏移值是否满足终止条件:
|A1-A0|= |(-1,0)-(-1,-1) | = |(0,1)| = 1 >0.1,因此继续迭代。
step 2.1:计算各样本距离聚类中心的距离:
样本A:d(A,A1) = 1;d(A,B1) = 2.2;因此样本A属于A1所在类;
样本B:d(B,A1) =2.2; d(B,B1) = 1;因此样本B属于B1所在类;
样本C:d(C,A1) = 1;d(C,B1) = 2.2;;因此样本C属于A1所在类;
样本D:d(D,A1) =2.2; d(D,B1) = 1;;因此样本C属于B1所在类;
step 2.2:全部样本分类完毕,现在计算A1类(包含样本AC)和B1类(包含样本BD)的新的聚类中心:
A2 =(-1, 0); B2 = (1,0);
step 2.3:计算聚类中心的偏移值是否满足终止条件:
|A2-A1|= |B2-B1| = 0 <0.1,因此迭代终止。
2、测试数据
下面这个测试数据有点类似SNS中的好友关系,假设是10个来自2个不同的圈子的同学的SNS聊天记录。显然,同一个圈子内的同学会有更密切的关系和互动。
数据如下所示,每一行代表一个好友关系。如第一行表示同学0与同学1的亲密程度为9(越高表示联系越密切)。
显然,这个数据中并没有告知我们这10个同学分别属于哪个圈子。因此我们的目标是使用K-Means聚类算法,将他们聚成2类。
[plain]view plaincopy
0 1 9
0 2 5
0 3 6
0 4 3
1 2 8
......
这个例子设计的很简单。我们使用上一篇文章中提到的关系矩阵,将其可视化出来,会看到如下结果:
这是个上三角矩阵,因为这个数据中认为好友关系是对称的。上图其实很快能发现,0,1,2,3,4用户紧密联系在一起,而5,6,7,8,9组成了另外一个圈子。
下面我们看看K-Means算法能否找出这个答案。
3、代码与分析
K-Means算法的Python代码如下:
[python]view plaincopy
# -*-coding: utf-8 -*-
frommatplotlib import pyplot
importscipy as sp
importnumpy as np
fromsklearn import svm
importmatplotlib.pyplot as plt
fromsklearn.cluster import KMeans
fromscipy import sparse
#数据读入
data =np.loadtxt('2.txt')
x_p =data[:, :2] # 取前2列
y_p =data[:, 2] # 取前2列
x =(sparse.csc_matrix((data[:,2], x_p.T)).astype(float))[:, :].todense()
nUser =x.shape[0]
#可视化矩阵
pyplot.imshow(x,interpolation='nearest')
pyplot.xlabel('用户')
pyplot.ylabel('用户')
pyplot.xticks(range(nUser))
pyplot.yticks(range(nUser))
pyplot.show()
#使用默认的K-Means算法
num_clusters= 2
clf =KMeans(n_clusters=num_clusters, n_init=1, verbose=1)
clf.fit(x)
print(clf.labels_)
#指定用户0与用户5作为初始化聚类中心
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03