大数据带来的改变,不仅仅是一点点
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
说到“数据加工”,那么就一定要提提当前热门的大数据处理平台:Hadoop & Spark。
高效、高容错的分布式文件系统(Hadoop HDFS)、高可靠性、可伸缩的分布式存储系统(HBase)、基于内存的分布式计算框架(Spark),不断涌起的开源大数据技术,推进着大数据时代的演进,给各种企业带来价值。
【使用运维门槛高,大数据“联姻”云计算来解决】
大数据平台使用的hadoop&spark这些都是开源软件,开源软件获取非常方便,但是企业会发现大数据开源软件种类多,技术复杂,对人员的技能要求很高,大数据平台的使用和运维成难题。而通常的企业没有专门的大数据工程师,这就给企业实施大数据带来了很大的难度。
举例说,通常一个企业部署一个简单数据分析的大数据项目,如果自建平台,一般需要采购,安装,部署,运维全流程来,至少耗时几个月。而且需要有专门技能的工程师,这种高门槛让普通的企业很难享受到大数据技术的带来的实惠,所以为了降低使用门槛,华为将大数据服务化,以云服务的形式提供企业以前需要复杂的物理机维护、集群创建、管理、作业维护简化成几个简单的web页面操作和API调用,大幅降低客户使用大数据的门槛,实现大数据组件的自动化部署和运维,大幅降低大数据的使用门槛和运维成本。
【华为大数据平台,经过考验的平台,强于社区又奉献于社区】
华为在将大数据与云计算结合之前,长期给电信,金融等大企业提供大数据平台(Hadoop & Spark),因此华为大数据平台是经过电信和金融等大企业严苛考验的平台。Hadoop & Spark是开源软件,开源软件在稳定性和性能上都有一定的缺失,华为云服务上部署的Hadoop & Spark是经过数百个项目检验过的稳定可靠的版本。以Spark SQL为例,开源的Spark也支持SQL,但是兼容性和能力上都有欠缺。华为在开源的基础上增强Spark SQL能力,华为云服务的Spark SQL基本支持SQL 99,国际上通用的TPC-DS测试100%兼容。除了Spark SQL,华为还在小文件、性能、稳定性等很多关键领域里面进行了增强。华为大数据对社区的版本是完全、无缝兼容,我们对Hadoop & Spark的增强,都积极回馈社区,目前Hadoop 累计贡献者20+,贡献patch 1000+,spark 累计贡献者15人+,贡献patch 200+。
【企业客户降成本、升效率福音:华为企业云提供弹性大数据服务】
目前,华为企业云弹性大数据服务已经应用在金融、教育、能源、智能交通、舆情监控等多个行业领域:
在金融服务领域,基于Hadoop的分布式大数据平台,采用分布式算法完成数据分析,帮助金融机构更了解客户需求和识别客户的资信状况,通过对客户刷卡、存取款、电子银行转帐、存贷款记录等信息进行综合分析,使原来2~4周才能处理的贷款审核业务周期,具备缩短至小时级业务处理的能力,极大的提升业务处理的效率。
在舆情监控领域,弹性大数据服务平台在海量数据中快速发现价值,以大数据为支柱的智慧警务成为警务发展的潮流,通过大量的多类型数据(从人口统计数据到到各区域所治安状况、流动人口数据等等),创建犯罪高发地区热点图谱,同时还将相邻片区等各种因素加入到数据模型中,并根据历史犯罪记录和地点统计并不断修正所得出的预测数据。实现更高效的情报收集,更方便的数据共享,更精准的预防个体犯罪行为和反社会行为,提升了业务处理效率。
大数据的价值在很多行业已经充分体现:
通过对海量、各种类型数据的分析,帮助企业的商业决策更全面,在商业决策中让更多的数据来说话。
运用大数据,可以改善服务体验、服务水平,如互联网金融服务。
金融、电信、媒资、互联网搜索/电商、广告等数据密集型行业,通过大数据,可以发现或创新出的商业价值。
未来的企业,面对越来越强的竞争,华为企业云大数据服务,愿意和企业一起,利用大数据技术,提升产品竞争力,用户满意度,以及提高商业价值上努力。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20