SAS与R优缺点讨论:从工业界到学界
尽管在工业界还是被 SAS 所统治,但是R 在学术界却得到广泛的应用,因为其免费、开源的属性使得用户们可以编写和分享他们自己的应用。我们的目的就是展示这两种差异巨大的语言各自优点,并且共同发挥他们的优势,我们同时还要指出那些不使用 SAS 好多年的、现在正在使用 R语言的人们的一些误解和偏见,因为他们已经很少关注 SAS 的发展和进步了。
前言
我们选取 SAS 和 R 的原因是因为他们是目前在统计领域中最有统治地位的两个编程语言。现在我们注意到一个不好的现象,就是在学术界重度使用R的用户认为R在被SAS霸占的工业界有具有相当优势的,然而熟练掌握这两个软件对于想在数据分析领域取得小有成就的年轻人来说很关键。
SAS经常有一些更新,非SAS程序员由于没有技术跟进往往并不知情。SAS绘图模块就是一个快速发展并成长的例子,然而许多人并不注意到这些升级以至于他们仍然固执的使用 R画图。SAS另一个不广为人知的例子是SAS可以轻松自定义函数,这正是 R 的强项。这个SAS过程步(PROC)有全面的语法检查、翔实的文档和技术支持;然而一个新的使用者很可能不知道这些工具可用,或者根本不知道它们的存在。另外,SAS 还拥有卓越的培训课程,网络及用户组分享资源,不同相关主题的大量书籍。知道并合理的使用这些技术以及工具有助于减少使用 SAS的畏惧之心。
统计方法的新进展
SAS:
优点:SAS 的软件及算法都是经过检验的,SAS 有技术支持去快速解决用户的需求。如果需要的话,SAS 会尝试在已存在的步骤中嵌入新的方法,例如增加一个选项或者新增一个语句(statement),因此用户不需要学习另外一个过程步。SAS也会发布最新通讯来详细说明软件的更新。
缺点:更新升级较慢。
R:
优点:用户可以快速实施新方法,或者寻找已经存在的软件包。很容易学习和理解新方法,因为学生们可以看到代码中的函数。
缺点:R 文档的更新都是通过用户进行的,所以新的方法并没有被很好调试和检验。开发者们散布于各地,而并没有在一起来进行团队合作的开发。
在这个问题上,SAS 和 R 的优缺点是互补的。对于 R,有人认为它的代码是开放的,可以看到 R 是如何工作的,这对于拥有相关背景的人是比较容易理解的。然而对于 SAS,它的过程步是预装的,文件中对不同的语句(Statement)及选项( Option) 存储了大量的数学公式。如果用户真的想看到底层程序,这个也是很容易实现的。对两种语言的使用着者来说,不管是学生还是其它用户,只是运行代码的话对于两种语言是没有什么不同的。你运行SAS,不需要知道它在干什么,类似的是,你运行R时,也不需要知道它在后台调用的函数。你所做的就是按章操作而已。
画图
SAS:
优点:SAS画图模块正变得越来越灵活、精良和易于使用。在一些分析过程步(PROCs) 中,ODS Graphics可以自动的生成一些图形,而不需要额外的代码。这使得用户多了一个选择,即可以使用默认的图表生成图表,也可以自己来创造个性化的图表。
缺点:图形背后的模板语言(TL)是庞大及不易使用的,特别是对于新手来说。新的高级功能如交互式绘图功能( interactive graphs),对于新手来说也是难以掌握的。
R:
优点:可以简单的生成漂亮的图表,还可以使用循环语句来生成动画。
缺点:在 R 中图表功能与统计分析无关,绘图和分析是相互独立的。用户必须自己来决定什么样的图形是合适的,使用效果的好坏取决于用户们的统计背景和喜好。尽管改变图形去达到特别的维度或角度并不是一个简单事儿。
SAS9.2 之前版本的图表功能不足是 R 更吸引人的一个主要原因之一。R的一个最好的特性之一就是其图表功能的高质量性和易用性。但是,当前 SAS/GRAPH 搭配 ODS Graphics 及 SG 过程在软件中增加了制图的能力。联合使用 ODS graphics 和 PROCS 可以使用户简单地生成与分析相关的展示图表。特定的绘图过程步如PROC SGPLOT,SGPANEL和SGSCATTER等越来越多,当然需要的一定代码来实现。另外,SAS 中还有一些其他不错的绘图选择,如 SGDESOGNER 和 SAS Enterprise Guide。
函数及可重复使用的代码
SAS:
优点:SAS有可在 DATA 和 PROC 步使用的大量函数和自定义函数。另外强大无所不能的、也可以被DATA步和PROC步使用的宏语言。宏变量可定义为局部或者全局类型。
缺点:编写自定义函数和详细的宏代码需要深厚的编程知识来确保正确性。
R:
优点:在 R 中编写函数很简单,用户也可以通过上传自己的函数到 R-CRAN 上与其它用户分享。
缺点:编写自定义函数需要深厚的编程知识来确保正确性。变量是严格的局部变量。在这一点上两种软件拥有类似的利弊。SAS 的早期用户运行自己的定制函数主要取决于宏程序的编写,这也是 R 用户认为其低效及笨重的原因。然而,SAS 9 版本的 PROC FCMP允许用户编写个性化的函数,SAS 9.2 版本又允许用户在 DATA 及 PROC 步中调用这些函数。这对于简单的统计函数是很有用的,对于更加复杂的统计函数也可以通过 IML 语言来实现。
SAS 及 R 两种语言都面临着怎样有效地、正确的使用函数,这就需要用户在函数编写的过程中拥有深厚的编程背景。从好的角度来说,一个程序员需要知道他们编写的是什么;危险的是,其它人可以下载一个 SAS 宏或者 P 程序包来使用,尽管他们不知道其内在工作原理,甚至不知道其正确性。所以,有了对宏及函数适当的了解,再来分享它们并应用于具体的需求是很方便的。
用户支持
SAS:
优点:SAS 有丰富的网上参考资料,专业的技术支持,专业的培训课程,许多优秀的出版书籍,一个紧密的用户组及网络社区。SAS 的问题可以直接反映给技术支持部门,他们会与用户一起来解决。
R:
优点:R 有很好的示例手册,网上参考材料,R 邮件列表和 R 聚会。
缺点:用户们取决于其它用户对于软件的看法及建议。因为 R 的开发者散布于全球各地,所以全球的用户是缺乏联系的。程序包(Package)并不是由 R 软件的开发核心团队来编写的,所以导致了程序的不完善甚至有时候会对结果的正确性有所怀疑。另外,很难去直接寻找一个针对具体问题的人员或者团队。
数据处理
SAS:
优点:SAS 可以处理任意类型和格式的数据。DATA 步的设计纯粹就是为了数据的管理,所以 SAS 擅长处理数据。利用丰富的选项,SAS 可以将大数据处理的很好,拼表以及 PROC SQL 也可以减少运行时间。
缺点:在 DATA 步骤中 SAS 中的DATA步有非明示的循环算法,因此使用者的编程思维需要改变以符合SAS的运行逻辑。
R:
优点:R 在最初就被认为是更加适合大数据的。它对于矩阵的操作和排序的设计是非常高效的。R 也可以很好的进行各种基于分析的数据模拟。
缺点:R 的设计更加关注统计计算以及画图功能,所以数据的管理是比较耗时的,而且不如在 SAS 中那么明晰。其中一个主要的原因就是:对于各种不同类型的数据,在 R 中进行很好的数据处理是比较难以掌握的。
数据处理的重要性经常在统计编程中被忽视了,但是它确实是非常关键的,因为实际的数据非常糟糕,不能直接应用于分析。纯粹地使用 R 的学生们对于得到的数据往往有不切实际的期望,而学习 SAS 是一个有效的方法去解决怎样整理原始的数据。SAS可以对大而繁杂的数据集进行管理和分析,而 R更着重于进行分析。
当处理复杂数据时,R 的面向对象的数据结构会遇到很多问题,并且R还缺乏一个内在的循环过程。在SAS中,应用标准化工具经常会进行如下操作:合并含有大量缺失数据的复杂数据集,再生成及修改其中的变量。而在R中,进行复杂的数据处理操作是没有标准化的,而且经常会导致更加复杂的过程。
SAS与R软件运行时间的快慢对比取决于任务。如SAS可以通过设置 MEMLIB,从而像R一样使用内存(而非硬盘)来提升运行速度。但在R中,没有这样的硬件驱动,只能使用内存来执行。
报表
SAS:
优点:SAS 通过很多有用的过程步来生成详细漂亮的报表。
缺点:能提供更详尽报表的过程如 TABULATE、REPORT 等,在能正确而有效的使用前,将为有一个艰难的学习曲线等待你跨越。
R:
优点:报表方面,R拥有诸多利器。Sweave包可以创造包含文字、表格和图形的 PDF 文件,其中图形可以LaTeX 和 R 命令来装扮。另一个新的程序包 Knitr 可以快速生成格式限制较少的网页内容。
缺点:R 没有一个模式化的方式来生成报表,所以需要在编程上花一些功夫。报表的生成对于 R 来说是一个比较新的方向,所以它不如 SAS 来的简单和快速。在 R 中,Sweave 和 Knitr 是报表这方面的领先的程序包,但是学习起来也比较困难。
重度报表使用用户应该了解这些以上不同,尽管学习 SAS 的报表功能需要花费一些时间,但是一旦掌握了就很有价值并有很高的灵活性。而从最基础学习 R 的报表功能也许不需要像 SAS 那样花那么多时间。
结论
我们可以看到解决 R 与 SAS 的辩论是三合一的。第一,就像在任何一个统计编程社区一样,我们知道这个PK是没有一个最终赢家。两种软件各有优缺点。他们有共存的必要,而学术上的教学中,他们也有共存的必要。如果学生们能够明确他们的需求并合理的应用,那样会获得更好的效果。如果只给学生教授一种软件是有局限性的,这样会使他们难以发挥学习另外一种软件的潜力。第二,用户们需要保持他们的工具箱与时俱进。SAS 和 R 都有一些很不错的学习网站去介绍最新的技术上的进步。第三,最理想的是学习两种软件并将其融合于分析中。对于 R 的用户们,通过转化 R 到SAS 的用户界面,可以同时使用 2 种软件。通过使用两种软件可以使处理及分析数据变得事半功倍,而且使所有的用户都满意。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16