数据挖掘助零售业二次起航
随着同业竞争的日渐激烈,传统零售行业跨渠道竞争的手段与方式越来越丰富,同时企业自身的经营成本也在逐年推高,在这一背景之下,企业越来越注重精细化运营管理。
精细化运营离不开对数据的分析解读以及深度挖掘,随着“大数据”的爆发,数据分析的观念也越来越深入人心。数据分析行业在中国已经走过十个年头,发展越来越快,不但有了行业组织,而且涌现出了一批专业的第三方数据分析服务机构,中颢润项目数据分析师事务所就是其中的佼佼者。我们立足于零售领域,总结了一些零售行业普遍存在的问题和一些解决思路的整体设计和解决方案的搭建。
一、供应链管理
供应链在零售行业有着举足轻重的地位,如何高效管理供应链成为零售企业控制成本、提高运营效率的最为直接有效的方式。
供应链比较经典的管理模型主要是ABC管理模型,在ABC管理模型之上,我们引入第三维度来细化管理方案,同时加入定时与定量两种库存订货模型,做成组合模型应用。
通过模型的组合应用,可以帮助企业解决资金占压与货品短缺的问题。
供应链的数据分析不仅包含供应商数据的分析,货品数据的分析,物流数据的分析,同时还应该包含企业内部其他的运营等支持活动的数据分析。
二、销售数据分析
1、销售数据常规分析
在我们服务于零售企业的过程中发现,大部分零售企业已经对日常经营数据进行了一些分析,其中包括日常的销售商品数据,如客单数、客单价、销售量、销售额以及供应商的一些数据。但目前这些数据的应用还局限于简单的描述性分析,并没有挖掘到更多的有价值的信息,对提高企业运营效率、产品销量和客户粘性的帮助有限。
2、商品数据分析
通过商品敏感分类表,能够区分不同商品的价格弹性或顾客对商品价格的敏感程度,从而为正确地选择促销产品类别和制定合理的促销方案(包括打折幅度)提供指导。
通过商品盈利分类表,能够区分不同商品的盈利性,准确分辨高盈利性商品、低盈利性商品,为制定合理的存货比率提供指导。
3、客户数据分析
(1)顾客忠诚计划
伴随着零售企业的迅猛发展,零售业的市场逐渐趋于饱和。受到土地等扩充成本的制约,依靠跑马圈地和打价格战很难超越竞争对手。加强日常管理,提高客户购物体验和客户忠诚度,成为零售企业的新出路。为此,零售企业需要回答以下问题:
ü如何通过商品的有效布局增加销售量?
ü如何评估促销活动效果?
ü如何提升顾客忠诚度?
以上问题可以通过客户细分加以解决。客户细分是指将一个大的消费群体划分为若干小的细分群体,其中同属于一个细分群的客户具有相似的消费特征。
客户细分可以使零售企业对不同细分群中的客户区别对待,提供差异化的服务,从而增加相应细分顾客群体的购买。典型的情况是利用“二八原则”,区分出那个只占顾客总人数20%,却为企业创造了80%销售额的群体,通过为这一群体提供差异化的服务,将增强企业盈利的稳定性和发展能力。
(2)关联分析与交叉销售
通过关联分析,我们可以对产品进行重新分类,把相互带动销售的产品在摆放时即分门别类,这种关联并非我们直观意义上的相关产品。而是需要大量数据进行分析,进而发现符合客户体验的关联产品。
交叉销售是指向老顾客销售新产品的过程。交叉销售能否成功,取决于对顾客需求和偏好的理解和把握,这些也可以通过数据分析来实现。
基于对顾客线上购买流程和交易行为的跟踪和研究,进行关联分析,从而为类似的用户形成有利的相关推荐。例如,根据用户购买量,对某类畅销产品排行,形成TOP10;再比如,当某用户购买了某产品后,提示该用户,购买过这个产品的顾客还买过哪些产品;此外,还可将用户购买行为与通过网站调查所挖掘出的用户喜好建立关联,对目标用户按其偏好开展相应的促销推广活动。
总之,零售企业由于积累了大量数据,可借助数据分析提高运营效率的环节很多。零售企业应该在常规统计分析的基础上,对现有数据进行更深入的挖掘和分析。中颢润项目数据分析师事务所长期与零售企业开展合作,在基础的数据分析基础之上,相应设计了一些灵敏的统计指标,挖掘出了数据的更深层次价值,使得零售企业的日常数据分析与把握更加轻松。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10