科技大数据 哲学新思维
“数字生活”中,我们接收更多数据,也制造了更多数据。大家都在思考:大数据究竟会对我们的生活产生何种影响?
大数据,通常用来形容人们创造的大量结构化和非结构化数据,其特点是4“V”,即,数据体量巨大;类型繁多,如网络日志、视频、图片、地理位置信息等等;处理速度快;蕴含着巨大的价值潜力。这种变化不只是科学上的,“大数据浪潮”还引发了思维模式和发展模式的改变——这让哲学家们认识到:必须认识其数理哲学基础。
对数据的认识史就是人类的发展史
人类的生存、发展方式可以归结为:获取信息,处理信息,而这就是智力。智力的进步,归根结底就是信息技术的进步。
人类历史上经历过三次信息革命:语言的创造——文字的创造——电信通讯的创造。
语言让人认识世界,建立相互关系;但其限制和缺点是无法突破个体的时空界限。文字的出现实现了人类思想的远距离和世代相袭传递,人类联合因此扩大;它虽然突破了空间上的限制,但需要耗费太长的时间。电信通讯的创造突破了空间的限制,为电子计算机与互联网创造奠定了基础。
电子计算机与互联网的创造,是一次伟大而空前的大综合,其特点是:所有信息全部归结为数据表达形式——0和1。只要有了0和1,加上逻辑关系,就可以构成全部世界。而世界本来就是这样构成的,已经出现的读脑机、脑电波指挥的电脑、智能机器人和人脑插入的芯片等等,都说明大脑的认知方式与世界事物同构。
大数据的出现促使我们认识到,人类的认识和实践,就是一部数据搜索、处理、挖掘和创新的历史。大数据方法揭示了因果关系是常规性的,终极的关系应从事物之间的相关性、同构性中寻找。数据反映的是具有同构关系的两个序列的关系信息,一个对象的运动轨迹,通过另一个序列的载体编码来表达。认识者获得的不是对象本身的绝对映像,而是离开了对象,从对象中抽象出来的、关于对象运动轨迹的数据。从这一角度看,同构关系是大数据的数理哲学基础。
人工智能可能超越人类
依据对象之间数据关系来认识世界,这一方法可靠吗?以往人类在对自己认识能力的反思中,已经多次提出疑议。人类每一次宣告自己是绝对真理的全称判断,如“所有的天鹅都是白的”,总是被一个小小“黑天鹅”单个事件推翻。“黑天鹅”的存在寓意着不可预测的重大稀有事件,它在意料之外,却又改变一切。因此,不能把科学知识看做是对客观世界的终极反映,它只是人们用理性构建的认识对象的模型。
大数据更像是一种连续不断的论证和数据流。这使让人们意识到,知识永远不会被完全确定,永远不会终止。
大数据的出现或许让人工智能超越人类成为可能。在图灵测试中,通过测试的机器人是否真的有自己的思想?反对者认为“智能和思想是两回事”。但是,如果在图灵测试中换上小孩,那么问题变成:对于刚出生的小孩,智能从什么时候开始?实验证明:小孩的自我意识始于大量的条件反射刺激(巴甫洛夫条件反射),仅仅是无数次的重复刺激成为坚定的信念基础,以至于形成信仰,相信这是不证自明的公理。事实上,大数据已经说明:思维的模型与世界的模型的同构关系已经真实地被把握了。
根据大数据的同构关系,我们将重新定义知识:人的知识也是一个有限量。从这个定义出发,人工智能可以超越人类——只要人工智能是动态的、可以发展的,就可以学习并超过人类。具有自我学习能力的机器人可以超过关键的“奇点”,只要通过证实的概率增加,给人工智能一个信仰或公理,人工智能技术将可以超越其制造者——人类本身。
将带来的发展模式革命
知识是不断递增的。摩尔定律揭示了大数据增长的速度。这是一场革命,是一场改变我们的思维、决策方式和发展方式的新的科学技术革命和产业革命,是一场影响世界和人类文明发展的革命。
与以往科技革命和工业革命相比,大数据的冲击力有三方面:
一是以无限增长突破有限增长。传统经济社会发展方式是有限的,因为物资财富和资产是有限的,是会枯竭的。例如现在使用煤,仅供开采160年,使用石油,仅供40年。但是大数据的增长却是源源不断的、递增的、无限的。
二是以效益递增突破效益递减。传统社会发展方式是高成本、低效益的,效益递减的。但是大数据时代的发展方式却是低成本、高效率、快速度的,效益是递增的。
三是和谐共赢发展突破了对立的、矛盾的发展。传统的发展是零和博弈似的、马太效应的:你有我就没有,你多我就少,富者越富穷者越穷。从某种程度上导致了人们互相争吵,世界不得安宁。现在,大数据时代的发展却是和谐的、合作共赢的。因为数据财富和资产可以复制、递增、共享。当然,关键还要看人的素质,因此要发展科教事业,提高人们素质。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10