统筹推进大数据 四大工程建设
积极发展大数据产业是贵阳加快发展的机会窗口和超常规发展的重要抓手。发展大数据产业既是贵阳实现后发赶超的创新性产业方向,又是贵阳实现产业转型和新型工业化的战略选择,也是贵阳着力促进“四化”同步发展、坚守两条底线、奋力打造贵阳发展升级版的必由之路。当前贵阳市正从强化政策带动、金融推动、市场驱动、外力拉动等多个角度发力,统筹推进全市大数据强基、筑云、智端和掘金四大工程的建设。预计到2016年底,贵阳大数据相关产业规模达到540亿元,约占全市信息产业总产值的30%,相当于2013年贵阳地区生产总值的四分之一;大数据龙头企业达到30家,上市公司5家以上,聚集200家大数据企业,引进和培养5000名以上大数据研发与应用人才,形成完整的大数据产业体系。当前全市上下应紧紧咬住这些奋斗目标,俯下身子,真抓实干,不折不扣地积极贯彻落实大数据产业发展应用规划和政策措施,着力做好五个方面的工作。
一是坚持政府推动和市场主导相结合。发展大数据产业的基本原则是市场驱动,政府引导,资源整合。为此,要发挥好省大数据产业发展领导小组的作用,加快组建大数据产业管理机构,为大数据产业发展提供组织保障。政府要主动适应互联网特别是移动互联网万物互联时代产业发展的新形势,打破传统时代服务企业的固有模式,探索基于信息化、云计算等新技术条件的新服务方式,努力为大数据企业提供新服务。要创新政府服务模式,精准把握大数据企业的发展需求,加快数据交易、流通平台建设,推动服务流程和模式升级换代,建立规则、强化监管、科学引导,促进产业良性发展。
市场需求是大数据产业发展的推动力量,大数据产业发展要以应用为抓手有序推进,发挥市场的配置作用,大力培育和引进市场主体,依托贵安新区大数据产业基地,建设数据交换(交易)平台,使市场在大数据产业发展中“点石成金”的效应最大化。
大力引进战略投资者和风险投资者。更加注重开展招商引资,通过政府简政放权换来市场高效配置,在基础设施建设、应用服务、研发设计等方面引进一批优强企业,催生增值服务、端产品制造等各个层面企业群,鼓励产业链上下游之间进行数据交换,培育面向应用的数据资产交易市场。
二是培育形成完整的大数据产业链。在产业链的每个环节,既要大力引进大企业,也要促成初创企业生成。在大数据产业生态基础层和分析层加强技术攻关、抢占技术前沿。围绕海量数据存储、数据库技术、数据挖掘、数据信息应用、信息安全等重点方向,以企业为主体加强关键技术攻关并推动成果产业化,形成一批达到国家制高点水平的“杀手锏”技术。在大数据产业生态应用层着力抓好增值服务层和配套端产品层服务。在增值服务层,重点引导数据挖掘应用,催生增值服务企业集群,可以培育出大量中小微企业。结合我省电子信息制造业实际,重点围绕提高本地配套能力,引进培育配套端产品企业,将“实业做实”,同时注重拓宽产业幅,谋划高端企业,发展芯片封装测试产业,推动我省集成电路产业起步发展。将云服务纳入政府采购目录,创造应用市场。发展贵阳智慧旅游、大健康产业、政府服务、网上金融。
三是积极申报国家级大数据科技产业园(产业基地)。区域经济发展的快慢很大程度上取决于国家制度及支持力度。国家级大数据科技产业园(以下简称大数据产业园))从成立到后续的开发建设都属于国家战略,大数据产业园的获批,对于大数据企业的发展,意味着项目加资金加政策倾斜。大数据产业园作为大数据企业的重要聚集基地,能够有效地创造聚集力,通过共享资源、克服外部负效应,带动关联产业的发展,从而有效地提升企业效益、提升地区品牌、创造社会价值和推动产业集群的形成。建议以贵阳云基地、呼叫中心、高新区顶新国际大陆云端大数据总部、贵阳市大数据服务外包示基地为依托,积极申报国家级大数据技术产业园(产业基地),争取国家级政策扶持,加快大数据产业的发展。
四是加快培养大数据技术人才。发挥好平台作用,加快培训和引进一批创新型技术人才和应用型大数据技术人才,以大数据领域研发和产业化项目为载体,积极引进一批领军人才和高端人才,鼓励大数据产业人才到贵阳创业。既要发挥好中关村贵阳科技园平台作用,又要发挥好在筑高校院所科技创新联盟作用,更要发挥好贵州省大数据产业联盟平台作用;更好发挥好贵州省大数据产业发展应用研究院、贵州大学大数据与信息工程学院平台作用,加快培养一批大数据产业发展急需人才,为奋力打造贵阳发展升级版提供强劲智力支持。
五是促进大数据前沿的技术创新。促进大数据前沿的技术创新要大力支持大数据工程和学术紧密结合,开展前沿技术攻关;着力发展服务器、移动智能终端产品、云计算与大数据通用基础软件、移动互联网应用软件等产品的企业,构建较为完整的电子信息软硬件产品链;培育开源社区,加强技术扩散和产业化,鼓励参与国际开源社区,培育自主开源社区,加快国际、国内先进技术产业化;建设公共服务平台,推进软硬件产品链垂直整合和企业间战略合作;大力发展面向信息技术产业的规划咨询、方案设计、投融资服务、系统集成、测试评估、安全审计、人员培训等公共服务,增强产业技术创新支撑能力,加快大数据分析能力和利用能力建设。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26