异常值的定义是:和大多数样本表现不一致的个体。
数据噪声:就好比当你收听一个信号不好的无线广播时,你会听到许多背景噪声。
图中橙色区域的数据围绕某个值上下波动并且没有表现出确定的趋势,我们称之为白噪声数据。
图中红圈中的数据是噪声数据吗?抑或是某种未发现趋势的峰值呢?
一个好的算法可以检测出异常值并将其剔除掉,AnomalyDetection包种的AnomalyDetectionTs函数可以很好地实现这个功能。
本文案例采用的是维基百科的数据,我们可以利用R通过API接口下载某个特定词项每日浏览量的数据。
本文的研究数据是:英文词语fifa从2013-02-22至今每日浏览量的数据。
算法中的参数max_anoms=0.01表示在最终结果中标注出0.01%的异常值;而参数direction=”pos”则表示检测高于平均水平的异常值。
如下表所示,该算法不仅可以检测出异常值,还会返回对应的平均水平值。
如果你想了解更多的关于该算法的数学原理,你可以搜索Generalized ESD和时间序列分解。
上图中黑色直线表示该时期内的浏览量呈递减趋势。有趣的是,位于直线上方用黑圈标注出来的两个点并没有被判定为异常值,这是因为该异常值检测算法主要关注的是趋势变化时的情况。黑圈中的点还是处于下降趋势中,所以没有被判定为异常值。相反地,2014-07-12的浏览量突然上升,突破前期的下降趋势,因此该点被判定为异常值。
词语fifa浏览量的异常值与国际足联的新闻消息息息相关,第一组异常值出现在2014年世界杯期间(2014年6 – 7月),而第二组异常值出现在国际足联丑闻事件期间(2015年5月)。
洛杉矶时报中展示了国际足联丑闻事件进展的时间表,正如我们算法所检测出的异常值,该丑闻事件有两个重要的时间点:5月27日和28日。
附录(R Code)
install.packages(“devtools”)
devtools::install_github(“petermeissner/wikipediatrend”)
devtools::install_github(“twitter/AnomalyDetection”)
install.packages(“Rcpp”)
library(wikipediatrend) ## Library containing API wikipedia access
library(AnomalyDetection)
library(ggplot2)
Download wiki webpage “fifa”
fifa_data = wp_trend(“fifa”, from=”2013-03-18”, lang = “en”)
Plotting data
ggplot(fifa_data, aes(x=date, y=count, color=count)) + geom_line()
Convert date variable
fifa_data<img alt=”date=as.POSIXct(fift_data”data-cke-saved-src=”https://chart.googleapis.com/chart?cht=tx&chl=date%20%3D%20as.POSIXct(fifa_data”>date)
Keep only desiered variables (date & page views)
fifa_data=fifa_data[,c(1,2)]
Apply anomaly detection
data_anomaly = AnomalyDetectionTs(fifa_data, max_anoms=0.01, direction=”pos”, plot=TRUE, e_value = T)
jpeg(“03_fifa_wikipedia_term_page_views_anomaly_detection.jpg”, width= 8.25, height= 5.25, units=”in”, res=500, pointsize = 4)
Plot original data + anomalies points
data_anomaly$plot
dev.off()
Calculate deviation percentage from the expected value
data_anomalyperc_diff=round(100*(data_anomalyexpected_value-data_anomalyanoms)/data_anomalyexpected_value)
Plot anomalies table
anomaly_table=data_anomaly$anoms
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27