异常值的定义是:和大多数样本表现不一致的个体。
数据噪声:就好比当你收听一个信号不好的无线广播时,你会听到许多背景噪声。
图中橙色区域的数据围绕某个值上下波动并且没有表现出确定的趋势,我们称之为白噪声数据。
图中红圈中的数据是噪声数据吗?抑或是某种未发现趋势的峰值呢?
一个好的算法可以检测出异常值并将其剔除掉,AnomalyDetection包种的AnomalyDetectionTs函数可以很好地实现这个功能。
本文案例采用的是维基百科的数据,我们可以利用R通过API接口下载某个特定词项每日浏览量的数据。
本文的研究数据是:英文词语fifa从2013-02-22至今每日浏览量的数据。
算法中的参数max_anoms=0.01表示在最终结果中标注出0.01%的异常值;而参数direction=”pos”则表示检测高于平均水平的异常值。
如下表所示,该算法不仅可以检测出异常值,还会返回对应的平均水平值。
如果你想了解更多的关于该算法的数学原理,你可以搜索Generalized ESD和时间序列分解。
上图中黑色直线表示该时期内的浏览量呈递减趋势。有趣的是,位于直线上方用黑圈标注出来的两个点并没有被判定为异常值,这是因为该异常值检测算法主要关注的是趋势变化时的情况。黑圈中的点还是处于下降趋势中,所以没有被判定为异常值。相反地,2014-07-12的浏览量突然上升,突破前期的下降趋势,因此该点被判定为异常值。
词语fifa浏览量的异常值与国际足联的新闻消息息息相关,第一组异常值出现在2014年世界杯期间(2014年6 – 7月),而第二组异常值出现在国际足联丑闻事件期间(2015年5月)。
洛杉矶时报中展示了国际足联丑闻事件进展的时间表,正如我们算法所检测出的异常值,该丑闻事件有两个重要的时间点:5月27日和28日。
附录(R Code)
install.packages(“devtools”)
devtools::install_github(“petermeissner/wikipediatrend”)
devtools::install_github(“twitter/AnomalyDetection”)
install.packages(“Rcpp”)
library(wikipediatrend) ## Library containing API wikipedia access
library(AnomalyDetection)
library(ggplot2)
Download wiki webpage “fifa”
fifa_data = wp_trend(“fifa”, from=”2013-03-18”, lang = “en”)
Plotting data
ggplot(fifa_data, aes(x=date, y=count, color=count)) + geom_line()
Convert date variable
fifa_data<img alt=”date=as.POSIXct(fift_data”data-cke-saved-src=”https://chart.googleapis.com/chart?cht=tx&chl=date%20%3D%20as.POSIXct(fifa_data”>date)
Keep only desiered variables (date & page views)
fifa_data=fifa_data[,c(1,2)]
Apply anomaly detection
data_anomaly = AnomalyDetectionTs(fifa_data, max_anoms=0.01, direction=”pos”, plot=TRUE, e_value = T)
jpeg(“03_fifa_wikipedia_term_page_views_anomaly_detection.jpg”, width= 8.25, height= 5.25, units=”in”, res=500, pointsize = 4)
Plot original data + anomalies points
data_anomaly$plot
dev.off()
Calculate deviation percentage from the expected value
data_anomalyperc_diff=round(100*(data_anomalyexpected_value-data_anomalyanoms)/data_anomalyexpected_value)
Plot anomalies table
anomaly_table=data_anomaly$anoms
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30