物联网:通过平台、数据分析和可视化实现商业价值
在过去几年中,我沉浸在物联网(IoT)中,发现客户试图解决的问题非常具体,例如获得能源效益,早期故障检测或远程设备诊断及维修。决策由削减运营成本(OPEX)和节省资本开支(CAPEX)所驱动。
有了全部物联网设备生成的数据,强大的分析和可视化能力有助于做出准确决策并采取及时行动,从而实现这些重要的业务目标。当然,尽管这听起来很吸引人,却没那么简单。为了通过降低运营成本和/或资本开支实现有意义的价值,我们需要有效处理数据收集、分析、可视化和控制。没有这些基本的要素,我们无法利用物联网的力量。
下面是对这些关键要素和利用它们充分实施成功物联网解决方案的概述。
物联网数据之旅——从数据收集&分析到可视化&控制
数据是流动的,它的原生形式往往容易带来误解。物联网的真正挑战是,你有太多水龙头同时流出各种不同液体。在收集阶段,处理数据复杂性和变化性至关重要。没有在早期处理好这种复杂性,之后不可能实现最终业务成果。
例如,让我们考虑一个典型的商业建筑和该环境中的数据旅程。你可能会遇到来自不同生产商的不同子系统,例如暖通空调、电梯、安全、电力。第一步是尝试通过一个通用数据模型规范化来自所有这些子系统的数据,然后关注那些与试图解决的问题相关的数据。
在有效的物联网平台中,规范化后的数据被送入分析引擎,以添加解释数据的理解力。分析引擎由基于特定领域专业知识的规则搭建,为操作必需信息的可视化仪表板提供原料。然而缺少了行动的可视化不太有用。因此,修复是整体解决方案中重要的一部分。
在通常的物联网使用中,警报会指出需要采取的行动。但是有人需要在某个地方按下按钮而让行动发生。最佳物联网平台被设计的目的在于关闭这一循环。它们不仅允许手动操作,也有助于警报生成时自动化(或者半自动化)尽可能接近实时地修复问题。
物联网分析和可视化广泛应用的障碍
虽然分析/可视化的价值对物联网来说是巨大的,仍然有几个障碍存在,在开发解决方案时需要了解并克服它们。
数据采集是昂贵的
可以被采集的数据非常大量,而其中很多是无关的。在一栋楼中有非常多全然相异的专业设备。从这些系统中获取数据繁琐复杂,而且有时需要几种不同的工具。这可能变得昂贵。即使你能够收集数据,一些行业正在争论如何以一种通用方式命名和标识数据,使得分析应用可以轻松使用这些数据。
领域专业知识
为了从物联网中得到最多,组织必须有领域专家作为团队成员,致力于解决问题和实现具体的物联网目标。“能源官员”是许多公司中一个相对新的头衔,这样一个人确保有人关注物联网解决方案中的能源节约。
投资回报率(ROI)并不总是立竿见影
真实的投资回报率实现很慢。在与物联网客户合作时,这样的情况我看到过一次又一次。在建筑中,有些客户只看到当他们的物联网解决方案扩展到多个站点时的明显收益。投资回报率取决于业务,而且是应该准备好耐心等待的。
物联网市场上太多正在进行
由于物联网势头正劲,初创和老牌的公司都带着新平台、分析和可视化技术进入该领域。虽然有更多产品和服务的选择可能不错,但是也会令人困惑,难以选择构建强大物联网分析可视化解决方案所需的适当技术。
选择和开发一个鲁棒的物联网分析&可视化解决方案
下面是一些设计物联网解决方案需要注意的技巧。有可能还有几个其他的注意是想,但是在这篇文章中,我将概述这些在过去几年中见到的:
找出问题并设置目标
理解和辨别你确实希望用物联网解决方案解决什么是至关重要的。例如目标是每年节省哪里的运营成本和节省多少。这个目标对你的业务是独一无二的,并且是一个非常关键的开始。这也意味着你需要有领域专业知识以帮助解决问题。
确保智能数据收集
这是一个难点,需要多次迭代才能变好。尝试找出你需要的数据并保证数据收集的准确性。此外,数据需要可靠性和高性能。大多数情况下,数据需要收集自多个已经安装的系统。
选择合适的物联网平台
如果你知道目标,并且知道需要什么数据,选择合适的数据收集管理基础技术非常重要。下面是一些寻找物联网平台时的关键原则:
开放技术:由此你可以规范化来自成熟的专用设备和时新的边缘设备,构建应用程序并在需要的时候和第三方系统整合,无需更换平台或基础设施。API在这里发挥了关键的作用——为开发人员查找已发布的开放API。
鲁棒的生态系统:你可能想要通过自行构建所有应用征服世界,但是有了安卓和iOS,我们都了解应用生态系统的力量。你想要能够去选择。选择有围绕技术的开发者社区的平台。
可扩展的:虽然这取决于你的业务需求,我仍然建议选择一个可以扩展的平台。在多个平台上学习、管理和开发应用程序是困难的,而且成本过高。如果你的业务服务一个大型复杂的物联网基础设施,你应该为未来几年数以百万计的设备连接到web中做好计划。
准备实时和历史分析
根据业务,你可能需要为关键决定和任务准备实时数据或者只是用历史数据运行定期报告。传统分析方法并不适合利用物联网的巨大力量。在边缘(设备级)使用实时分析,并结合历史趋势分析非常重要。在下面的视频中,我谈到了什么使数据爆炸成为了物联网的好机会。
可行动的可视化
灵活性和与分析的集成对物联网数据可视化解决方案非常重要。可选范围从成熟的企业级商业智能(BI)可视化工具,能够处理复杂数据,到为非结构化数据复杂和简单可视化的新的云工具。我喜欢自助服务的可视化功能,这样我不需要永远等待别人创建报告。还要考虑移动用户需要什么——简单性是一大驱动力。可视化是关于如何以一种方式呈现数据,从而可以及时采取适当行动的一切。
一旦选定,安装和运行后,你将需要不断评估分析和可视化解决方案,并按需求做出改变。
结论
做那些最适合你的事情。没有固定的公式,每个企业都不同。找出你希望解决的具体问题,围绕它构建解决方案。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20