大数据营销四大模式 战争未开结局已定
最近关于四种大数据营销模式的文章成为营销圈内热点,文章根据广告与大数据之间的关联和丰富度,将基于数据的营销进行以下分类:1.关联模式,根据结果进行数据关联分析,如传统超市行业将纸尿裤与啤酒一起促销的经典案例;2.精准定向模式,根据用户的精准信息进行精准化推荐,也是社交媒体最常用的营销手段;3.动态调整模式,将用户行为列入大数据维度,以动态的运算结果来实现营销效果最大化,代表企业如谷歌;4.粉丝爆炸器模式,跨平台打通账户体系,以海量用户和数据维度刻画用户脸谱,为企业寻找与其匹配用户,代表企业有阿里妈妈。
数据广度和深度决定营销模式
互联网时代,精准化营销一直是营销界的主要命题,也由于互联网在获取数据方面的便利和优势使得精准化营销具有了诸多可能性。毋庸置疑,数据的丰富度是绝对精准营销的最核心要素,即只有具备足够丰富数据的前提下,其基于数据模型运算才是科学和有效的。以上四种形态也可视为数据丰富度不断提升前提下的营销形式的进化,如当平台只掌握产品销量等简单数据时,只能通过数据的关联性来进行营销,但基本是不考虑关联性背后的科学性的,而随着可掌握信息的不断提升,尤其是社会化媒体的出现,用户的标签以及社交平台信息均可成为判定用户标签的重要指标,营销的精准度大幅提升。
而在铁哥看来,大数据之“大”并非只在数据之广,更在于数据之深,即只有掌握了更多维度的数据,其基于数据的运算结果才是真正科学和趋于真实的。如阿里妈妈为代表的粉丝爆炸器模式,乃是通过跨平台方式打通账号体系,以丰富的数据维度来刻画用户的行为脸谱,由于阿里妈妈数据横跨媒体、工具、购物等产品多平台,其数据的广度和深度优势相对而言极为明显,因此其数据的运算结果也是最接近真实的。
阿里投资背后的大数据布局
在移动互联网时代,阿里明显加大了产品投资和收购的力度,先后投资高德、UC浏览器、新浪微博、快的等产品,当坊间都在讨论收购背后的战略布局时,铁哥建议诸位不妨将目光转向大数据的布局层面。
阿里此前手握最大的线上交易数据,此前也根据此发布了线上交易报告,而事实是,海量交易数据固然有明显优势但对于基于多维度数据的人物脸谱刻画而言依然略显单薄。随着产品布局的完善,阿里通过产品账号体系的打通,获得了多平台多维度的数据,集合了地图、出行、浏览、新闻、社交、购物等多维度,在刻画用户脸谱,预测用户行为方面具有极大优势。
大数据的精准营销并非是如今简单信息的呈现,而是通过大数据的模型搭建来预测用户行为,以此来提高营销的转化率。基于大数据的用户行为预测,已经有不少企业对外有所表述,但在铁哥看来,用户行为预测的背后除了数据海量以及多维度之外,数据的真实和关键维度的占有量是最为重要的。
如出行如地图如社交,阿里在此刚需高频产品中占得数据优势,也意味着获得了未来精准营销的最核心和关键的战略资源。
阿里妈妈作为阿里精准营销的实施者,责任重大。
未来大数据营销格局走向
如前文所讲,精准营销关键在数据之“大”和“广”,而数据的获取和整合能力也将成为营销企业未来的主要竞争点。
1. 互联网巨头瓜分精准营销市场
互联网巨头由于其产业链比较广,尤其在移动时代通过资金和用户优势不断延伸其产品线,如阿里的大手笔收购,百度在地图和外卖市场的发力,腾讯的社交和游戏等产业链的布局。这也便意味着,互联网巨头企业在战略性数据的获取层面已经具有一定优势,基于移动的精准营销战争未开始已经结束。
2. 人物脸谱刻画将成为主流营销模式
以往广告业将品牌广告和营销广告是区别对待的,品牌广告更在意所投放平台的逼格,而营销广告更擅长用多媒体形式引导用户产生购买。而事实是,在粉丝爆炸器的营销模式之下,此两种广告形式是可以进行完美结合的,即通过人物行为刻画来有针对性的进行广告形式的投放,也即将广告投放至真正的购买目标用户那里,实现品牌和销量的双丰收。
粉丝爆炸器的营销模式本质上仍是通过人物脸谱刻画为用户寻找真正的核心目标用户,广告主怎能有理由不接受?
但我们必须看到,虽然多数平台都打着精准营销的招牌,但由于数据获取量以及运营经验等诸多限制,真正能做到的其实并不多。自07年开始,从阿里体系内发展起来的阿里妈妈不断整合营销资源,将其触角已经由直通车钻展伸向了全网,这对于“忽悠家”显然不是个好消息。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10