中国要在数据人才的培养上有所作为,否则数据强国将是可望而不可及;为保证数据人才培养的质量,中国需要制定培训院校的资质要求和各类数据人才的考核鉴定标准
据最新统计,中国网民已达到6.5亿以上,手机数量近13亿。中国政府的经济参与和调控能力在世界上首屈一指,所用的各种行政登记、工作报表、调查问卷数量巨大,管理着世界上人口最多的国家。不管是从商业大数据还是政府大数据的角度来说,中国都是名副其实的“数据大国”。正像最近由人民出版社出版的《大数据:领导干部读本》一书所称:“从全球占比来看,中国作为数据大国的潜力极为突出。2010年中国在整个数字宇宙中比例为10%,2013年占比为13%,2020年占比将达到18%。届时,中国的数据规模将超过美国的数据规模,位居世界第一。”
但数据大国不等于数据强国。数据强国最重要的标志不是数据拥有量,而是使数据产生价值的处理和分析能力。在大数据时代,数据已成为最有价值的生产资料。但是仅仅拥有数据不能形成生产力。就像石油埋藏在地下千万年,直到近代人类掌握了勘探技术和提炼工艺才使石油变成能源和多种化工产品。不同于自然资源,数据是人造资源。大数据技术的核心价值是它为人类提供了用海量甚至是全景观的数据达到更精准认知的新手段。它使实时、互动数据驱动的智能决策成为可能。依托覆盖几乎全球各个角落的互联网,数据时时刻刻在一个虚拟世界中传播碰撞,存储记录人类活动和自然界的方方面面。
走向数据强国的关键是提高和增强数据处理和分析的能力。这种能力有两方面的关键要素:(1)数据流通、采集、存取、处理所需的硬件软件和信息基础设施;(2)管理、操作、应用硬软件(包括机器学习)处理和分析数据的不同层次的数据人才。对于前者,中国通过政府和企业的大量投资正在追赶世界先进国家。而后者则是我们的软肋,不是短期内能填补的缺口。硬件、软件、网路、数据库等技术支持的价格在不断降低和商品化,数据获得的难度和费用也会不断改善。因此,在走向数据强国的过程中,最珍贵和难得的资源将是数据人才。最终的竞争也将是人才的竞争。
数据强国将需要多层次的数据人才。
将大数据变成智能以支持决策的过程中包括对海量数据的清理、分类、组织、存储、搭配、聚合等一系列的准备工作。每个亲身参与过大数据开发项目的数据科学家都知道,数据清理和准备要占开发时间的70%-80%,数据清理和准备与数据分析和建模是不同层次的工作,需要不同的技能。虽然一个合格的数据科学家应该懂得数据开发的全过程,但让数据科学家在数据清理和准备上花费太多时间是很大的资源浪费。迎接数据强国挑战之良策应是培养不同层次的数据人才,使之各有所长、各尽其能。
在互联网几乎无处不在的大数据时代,各行各业都需要拥有懂得如何应用数据创造价值的专业人才。这不仅是能建立数据模型的数据科学家和高级数据分析家,也包括数据采集、清理、整合、加工、存储的数据管理员,建立和维护数据库的数据工程师,能胜任日常数据分析和应用的数据分析师。老企业的转型和新企业的创立都离不开数据的应用。我们不但需要高级数据分析师和数据科学家,同时也需要数量更多的数据管理员、数据工程师、和数据分析师。
在实现中国经济从效益驱动向创新驱动的转型中,数据的应用将会起到越来越大的作用。这就要求企业和政府的管理人员提高使用数据支持决策的能力。目前在美国不断升温的大数据技术之一的自助可视化分析(Self-Service Visual Analytics)很可能在不远的将来成为每个管理者必备的技能。
数据人才的培养应通过多种渠道。高级数据分析家和数据科学家很适合在大学和研究生院培养。职业教育在数据人才培养方向上应注重于数据管理员、数据工程师、以及数据分析师。后三种数据人才的需求量远大于前两种高级数据人才。企业教育则可侧重于在职管理人员数据应用能力的培训和提高。各种渠道的培养都必须注重数据科学的研究和发展。
为保证数据人才培养的质量,中国需要制定培训院校的资质要求和各类数据人才的考核鉴定标准。数据科学是应用科学,数据人才必须亲身参与到数据应用的实际项目中去,在实践中提高数据应用能力。大数据时代的技术发展一日千里,数据人才的鉴定也必须与时俱进,定期重新认证。
《大数据:领导干部读本》一书的后记中指出:“中国面临着成为‘数据大国’和‘数据强国’,实现‘弯道超车’的历史机遇。”这个机遇是珍贵的,这个愿景是振奋人心的。中国成为数据大国是顺理成章的,但成为数据强国却是真正的挑战。迎接这一挑战的关键是中国要在数据人才的培养上有所作为,否则数据强国将是可望而不可及。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22