本文基于R语言进行基本数据统计分析,包括基本作图,线性拟合,逻辑回归,bootstrap采样和Anova方差分析的实现及应用。
不多说,直接上代码,代码中有注释。
1. 基本作图(盒图,qq图)
#basic plot boxplot(x) qqplot(x,y)
2. 线性拟合
#linear regression n = 10 x1 = rnorm(n)#variable 1 x2 = rnorm(n)#variable 2 y = rnorm(n)*3 mod = lm(y~x1+x2) model.matrix(mod) #erect the matrix of mod plot(mod) #plot residual and fitted of the solution, Q-Q plot and cook distance summary(mod) #get the statistic information of the model hatvalues(mod) #very important, for abnormal sample detection
3. 逻辑回归
#logistic regression x <- c(0, 1, 2, 3, 4, 5) y <- c(0, 9, 21, 47, 60, 63) # the number of successes n <- 70 #the number of trails z <- n - y #the number of failures b <- cbind(y, z) # column bind fitx <- glm(b~x,family = binomial) # a particular type of generalized linear model print(fitx) plot(x,y,xlim=c(0,5),ylim=c(0,65)) #plot the points (x,y) beta0 <- fitx$coef[1] beta1 <- fitx$coef[2] fn <- function(x) n*exp(beta0+beta1*x)/(1+exp(beta0+beta1*x)) par(new=T) curve(fn,0,5,ylim=c(0,60)) # plot the logistic regression curve
# bootstrap # Application: 随机采样,获取最大eigenvalue占所有eigenvalue和之比,并画图显示distribution dat = matrix(rnorm(100*5),100,5) no.samples = 200 #sample 200 times # theta = matrix(rep(0,no.samples*5),no.samples,5) theta =rep(0,no.samples*5); for (i in 1:no.samples) { j = sample(1:100,100,replace = TRUE)#get 100 samples each time datrnd = dat[j,]; #select one row each time lambda = princomp(datrnd)$sdev^2; #get eigenvalues # theta[i,] = lambda; theta[i] = lambda[1]/sum(lambda); #plot the ratio of the biggest eigenvalue } # hist(theta[1,]) #plot the histogram of the first(biggest) eigenvalue hist(theta); #plot the percentage distribution of the biggest eigenvalue sd(theta)#standard deviation of theta #上面注释掉的语句,可以全部去掉注释并将其下一条语句注释掉,完成画最大eigenvalue分布的功能
4. ANOVA方差分析
#Application:判断一个自变量是否有影响 (假设我们喂3种维他命给3头猪,想看喂维他命有没有用) # y = rnorm(9); #weight gain by pig(Yij, i is the treatment, j is the pig_id), 一般由用户自行输入 #y = matrix(c(1,10,1,2,10,2,1,9,1),9,1) Treatment <- factor(c(1,2,3,1,2,3,1,2,3)) #each {1,2,3} is a group mod = lm(y~Treatment) #linear regression print(anova(mod)) #解释:Df(degree of freedom) #Sum Sq: deviance (within groups, and residuals) 总偏差和 # Mean Sq: variance (within groups, and residuals) 平均方差和 # compare the contribution given by Treatment and Residual #F value: Mean Sq(Treatment)/Mean Sq(Residuals) #Pr(>F): p-value. 根据p-value决定是否接受Hypothesis H0:多个样本总体均数相等(检验水准为0.05) qqnorm(mod$residual) #plot the residual approximated by mod #如果qqnorm of residual像一条直线,说明residual符合正态分布,也就是说Treatment带来的contribution很小,也就是说Treatment无法带来收益(多喂维他命少喂维他命没区别)
(左)用 y = matrix(c(1,10,1,2,10,2,1,9,1),9,1)和
(右)y = rnorm(9);
的结果。可见如果给定猪吃维他命2后体重特别突出的数据结果后,qq图种residual不在是一条直线,换句话说residual不再符合正态分布,i.e., 维他命对猪的体重有影响。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10