京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的人才工作创新
“大数据时代已经到来!”麦肯锡全球研究院的报告指出,数据正成为与物质资产和人力资本相提并论的重要生产要素。大数据带来的信息风暴正在变革我们的生活、工作和思维,带来一场新的思维变革、商业变革和管理变革。大数据将会给人才工作带来怎样的挑战与机遇?我们应当如何应对?
大数据时代的挑战和机遇
所谓大数据,又称巨量资料,其大小或复杂性使得无法通过常用技术以合理的成本并在可接受的时限内对其进行捕获、管理和处理。大数据分析,就是通过特殊的技术,从各种各样类型的海量数据中,快速获得有价值信息。
大数据正在改变着我们的世界。Google推出“流感趋势”项目,通过追踪像“咳嗽”、“发烧”和“疼痛”这样的词汇,准确判断流感在哪里扩散;沃尔玛使用大数据模式,分析社交网站海量数据,从“挖掘”顾客需求到“创造”消费需求,精准营销啤酒和尿布;洛杉矶警局用大数据计算模型安排警车巡逻,预测案件多发地段;通过分析淘宝、天猫、B2B、聚划算的商家的各种数据,阿里巴巴打造了一个信贷工厂,为平台上的卖家提供小额信贷服务。
可以预见,大数据在各行各业特别是公共服务领域,具有更加广阔的应用前景。政府人力资源社会保障部门,无论是人才服务、就业服务,还是社会保险,每天都在诞生海量数据,如何将这些原本碎片化的数据,进行全面科学地提取和数据分析呢,为我们的决策服务,是大数据带给我们的最大挑战和机遇。
从当前来看,大数据首先将给政府管理带来一场思维的革命:其一,对政府公共服务部门而言,决策挑战在于数据采集,而非简单存储。数据采集和监控的精细化,并纳入基础框架,这是大数据意识的体现。其二,大数据时代,很多数据在收集的时候并无意用作其他用途,而最终却将产生很多创新性的用途。如IP地址的跟踪,给招才引智团组出访提供了目的地参考。其三,知道“当下状况”,也就是对即时数据的掌握。管理者可以借助数据库,从数据收集中预见到发展前景,很快地将所获得信息及时分类并做出明智的决策,最终采取及时准确的行动。
大数据与人才工作创新
大数据在人才工作领域有哪些作为?当前可以看得到的前景是,数据分析师运用大数据技术,能够改进当前人才引进和管理的粗放模式,通过相关数据搜集、分析和应用,实现人才引进和服务的精准化,不断提高人才工作科学化水平。
精准分析产业发展与人才需求,提高引才效率。哪些产业有哪些企业,哪些企业有哪些人才需求,哪些新兴产业或技术需要引进人才,哪些高校聚集哪些人才,特定产业人才来自哪些科研院所,以往这些都是靠估算或抽样调查获得,而进入大数据时代之后,通过数据搜集和联机分析,就能形成点(企业)、线(产业链)、面(城市或地区)的完整分析,再用这份数据报告,按图索骥、招揽人才。当这些数据采集和运用具有一定年限积累后,可以引进数据挖掘技术,发现潜藏在数据背后的历史规律,同时对未来进行预测。例如,通过对IP地址的分析,可以清楚知道每天都是哪些人在访问网站,并定期做出网站访问表,据此确定引进人才的重点群体,从数据挖掘中找到那些更愿意回国创业的海外留学人才。
精准分析人才服务需求,优化人才服务。从粗放式管理向精细化管理转变,数据发挥着重要作用。大数据理念同样适用于人才服务领域。当前,各地都认识到人才服务的重要性,但还不能准确捕捉到人才的需求。如果能善用已有的数据,就能够从具体的指标和数据倒推出人才的驱动性需求。例如,现在许多地方都推出了一站式人才服务,将健康医疗、旅游休闲、子女教育、出入境服务、专题培训、创新创业服务、住房保障、文化服务等,都归入一张类似“市民卡”的服务卡。通过对人才使用这些公共服务的类别、次数、频率等数据的分析,就可以找出人才最需要和最常用的服务是哪些,根据这些数据再来优化服务布局,不仅能够使公共财政发挥最佳效应,也能真正把服务做到人才心坎上去。未来的人才服务借助大数据,将如同软件的升级,数据分析师通过对数据进行收集和分析,那些几乎无人使用的服务可以在版本升级中被去除,而频繁使用的功能则将得到进一步强化和完善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19