数据可视化的五个步骤
数据被称作是最新的商业原材料「21世纪的石油」。商业领域、研究领域、技术发展领域使用的数据(数据分析师认证)总量非常巨大,并持续增长。就Elsevier而言,每年从ScienceDirect下载的文章有7亿篇,Scopus 上的机构档案有8万个、研究人员档案有 1 千 3 百万,Mendeley上的研究人员档案有 3 百万。对于用户来说,从这个数据海洋中抓到关键信息越来越难。
许多先进的可视化方式(如:网络图、3D 建模、堆叠地图)被用于特定用途,例如 3D 医疗影像、模拟城市交通、救灾监督。但无论一个可视化项目有多复杂,可视化的目的是帮助读者识别所分析的数据中的一种模式或趋势,而不是仅仅给他们提供冗长的描述,诸如:“ 2000 年 A 的利润比 B 高出 2.9 % ,尽管 2001 年 A 的利润增长了 25 % ,但 2001 年利润比 B 低 3.5 % ”。出色的可视化项目应该总结信息,并把信息组织起来,让读者的注意力集中于关键点。
对于 Elsevier’s Analytical Services 的项目而言,我们一直在寻找提升数据分析和可视化的方式。例如,在我们对于研究表现的分析中有大量关于研究合作的数据;我们为 Science Europe 提供的报告(Comparative Benchmarking of European and US Research Collaboration and Researcher Mobility) 包含跨州合作以及国际合作的数据,这些数据不适合直接用二维表和X-Y图展示。为了探索数据背后的故事,我们使用了网络关系图来识别国家间的合作,并了解每个合作关系的影响。想了解我们的团队如何为政府部门、出资者、大学、研究者提供基于数据的材料,为研究方面的策略决定提供信息,可参阅 Telling stories with big data 一文。
本文提供一份包含五个步骤的数据可视化指南,为想用表格、图形来传播观察结果、解读分析结果的人士提供帮助。要记住,建立好的可视化项目是一个反复迭代的过程。
开始创建一个可视化项目时,第一步是明确要回答的问题,又或者试着回答下面的问题“这个可视化项目会怎样帮助读者?”
表 1–数据集中的三条记录
图1-槽糕的可视化项目并不澄清事实,而是引人困惑。此图中包含太多变量。
清晰的问题可以有助于避免数据可视化的一个常见毛病:把不相干的事物放在一起比较。假设我们有这样一个数据集(见表 1 ),其中包含一个机构的作者总数、出版物总数、引用总数和它们特定一年的增长率。图1是一个糟糕的可视化案例,所有的变量都被包含在一张表格中。在同一张图中绘制出不同类型的多个变量,通常不是个好主意。注意力分散的读者会被诱导着去比较不相干的变量。比如,观察出所有机构的作者总数都少于出版物总数,这没有任何意义,又或者发现 Athena University、Bravo University、Delta Institution 三个研究机构的出版物总数依次增长,也没有意义。拥挤的图表难以阅读、难以处理。在有多个 Y 轴时就是如此,哪个变量对应哪个轴通常不清晰。简而言之,槽糕的可视化项目并不澄清事实而是引人困惑。
确定可视化项目的目标后,下一步是建立一个基本的图形。它可能是饼图、线图、流程图、散点图、表面图、地图、网络图等等,(数据分析师培训)取决于手头的数据是什么样子。在明确图表该传达的核心信息时,需要明确以下几件事:
我们试图绘制什么变量?
X 轴和轴代表什么?
数据点的大小有什么含义吗?
颜色有什么含义吗?
我们试图确定与时间有关趋势,还是变量之间的关系?
有些人使用不同类型的图表实现相同目标,但并不推荐这样做。不同类型的数据各自有其最适合的图表类型。比如,线形图最适合表现与时间有关的趋势,亦或是两个变量的潜在关系。当数据集中的数据点过多时,使用散点图进行可视化会比较容易。此外,直方图展示数据的分布。直方图的形状可能会根据不同组距改变,见图 2 。(在绘制直方图时,本质是在绘制柱状图来展示特定范围内有多少数据点。这个范围叫做组距。)
图2-当组距变化,直方图的形状也发生变化。
组距太窄会导致起伏过多,让读者只盯着树木却看不到整个森林。此外,你会发现,在完成下一个步骤以后,你可能会想要修改或更换图表类型。
假设我们有另一个关于某研究机构出版物数量的数据库(见表 2 )。可视化过程中最关键的步骤是充分了解数据库以及每个变量的含义。从表格中可以看出,在 A 领域(Subject A),此机构出版了 633 篇文章,占此机构全部文章的 39% ;相同时间内全球此领域共出版了 27738 篇文章,占全球总量的 44% 。 注意,B 列中的百分比累计超过 100% ,因为有些文章被标记为属于多个领域。
在这个例子中,我们想了解此机构在各个领域发表了多少文章。出版数量是一个有用的指标,不仅如此,与下面这些指标对照会呈现出更多信息:
由此,我们可以确定一个相对活跃指标,1.0 代表全球平均活跃程度。高于 1.0 代表高于全球水平,低于 1.0 代表低于全球水平。用 B 列的数据除以 D 列,得到这个新的指标,见表 2 。
表2-用B列的数据除以D列,得到新的指标:相对活跃程度(E栏)。
现在我们可以用雷达图来比较相对活跃指数,并着重观察指数最高/最低的研究领域。例如,此机构在 G 领域的相对活跃指数最高( 1.8 ),但是,此领域的全球总量远远小于其他领域(见图 3 )。雷达图的另一个局限是,它暗示各轴之间存在关系,而在本案例中这关系并不存在(各领域并不相互关联)。
图3-相对活跃指数雷达图
数据的规范化(如本例中的相对活跃指数)是一个很常见也很有效的数据转换方法,但需要基于帮助读者得出正确结论的目的使用。如在此例中,仅仅发现目标机构对某个小领域非常重视没太大意义。
我们可以把出版量和活跃程度在同一个图表中展示,以理解各领域的活跃程度。使用图 4 的玫瑰图,各块的面积表示文章数量,半径长短表示相对活跃指数。注意在此例中,半径轴是二次的(而图 3 中是典型线性的)。图中可以看出,B 领域十分突出,拥有最大的数量(由面积表示)和最高的相对活跃程度(由半径长度表示)。
图4-玫瑰图。此图中各块面积表示文章数量,半径长短表示相对活跃指数(E列)。
用肉眼衡量半径长度可能并不容易。由于在本例中,相对活跃指数的 1.0 代表此领域的全球活跃程度,我们可以通过给出 1.0 的参照值来引导读者,见图 5 。这样很容易看出哪些领域的半径超出参考线。
图5-带有相对活跃指数参考线的玫瑰图
我们还可以使用颜色帮助读者识别出版物最多的领域。如图例所示,一块的颜色深浅由出版物数量决定。为了便于识别,我们还可以把各领域名称作为标签(见图 6 )。
图6-玫瑰图中的颜色深浅代表出版物数量(颜色越亮,出版物越多)
数据可视化(数据分析培训)的方法有很多。新的工具和图表类型不断出现,每种都试图创造出比之前更有吸引力、更有利于传播信息的图表。我们的建议是记住以下原则:可视化项目应该去总结关键信息并使之更清晰直白,而不应该令人困惑,或用大量的信息让读者的大脑超载。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04