这次通过一个实例来讲解一下协同推荐的问题。在实际生活中,我们会经常收到当当,卓马逊等购物网站发来的商品推荐邮件。很奇怪卓马逊是依据什么(数据分析师)来给我发一些相关商品的推荐,但是今天我们就假定他是根据协同推荐的机制来实现这一功能的吧。
很多时候购物网站都是根据其他用户的评价给一个用户推荐商品或者图书等。很多购物网站都会有这种长尾效益,用户购买或者评价的商品都是少数,而大多数商品只是得到很少几个用户的评价。所以存在数据稀疏的问题。这里就叫“cold start”问题。SlopeOne算法可以用来解决这个问题,这个算法很简单,易于实现且效率较高。
SlopeOne的基本概念很简单,例如用户X,Y和A都对项目1打了分。同时用户X,Y还对项目2打了分,用户A对项目2可能会打多少分呢?如下表1-1
用户对项目1的评分对项目2的评分
X53
Y43
A4?
根据SlopeOne算法,应该是:4-((5-3)+(4-3))/2=2.5.我想这个应该是很好理解的,实际上就是找到对项目1和项目2都打过分的用户,算出评分差的平均值,我们就可以推测出对项目1打过分的用户A对项目2的可能评分,并向用户A推荐新项目。这里可以看出SolpeOne有一个很大的优点,在有很少数据的时候也能得到一个相对准确的推荐,这一点可以解决“cold start”问题。当然,我们这里的情况是最简单的,根据项目1的评价估计项目2的评价,如果要根据好几个项目的评价来估计某一个项目的评价就要用到加权算法(weighted SolpeOne)。如果有100个用户对项目1和项目2做了评价,1000个用户对项目3和项目2也打了分。显然这两个的权重是不同的。我们的计算方法:(100*(rating 1 to 2)+1000*(rating 3 to 2))/(100+1000)
使用基于SolpeOne算法的推荐需要以下数据:
1)有一组用户
2)有一组项目(items),例如图书,商品等
3)用户对其中某些项目打分(rating)表达他们的喜好
SolpeOne算法要解决的问题是:对某个用户,已经知道他对其中一些项目的评价,向他推荐一些他还没有评分的项目,以增加销售机会。数据分析师认证
一个推荐系统的实现包括以下三步:
1)计算出任意两个项目之间评分的差值
2)输入某个用户的评分记录,推算出对其他项目的可能评分值
3)根据评分的值排序,给出评分最高的项目列表
第一步:例如我们有三个用户和四个项目,用户打分的情况如表1-2
项目用户1用户2用户3
Item1544
Item2454
Item343N/A
Item4N/A55
在第一步中我们的工作就是计算出项目之间两两打分之差,计算出如下矩阵1-3
Item1Item2Item3Item4
Item1N/A0/32/2-2/2
Item20/3N/A2/2-1/2
Item3-2/2-2/2N/A-2/1
Item42/21/22/1N/A
首先要定义一个数据结构来存储该矩阵中的每个打分情况:
public class Rating
{
public float Vlaue {get; set;}
public int Freq {get; set;}
public float AverageValue {
get {return Value/Freq;}
}
}
用一个Dictionary来保存这个结果矩阵,Dictionary的key是Item1Id加上Item2Id,值是Rating:
/************************************************************************/
/* 评分差均值矩阵 */
/************************************************************************/
class RatingDifferenceCollection : Dictionary
{
//获得评分差值矩阵中的key值
private string GetKey(int Item1Id,int Item2Id)
{
//return Item1Id + "/" + Item2Id;
//根据差异矩阵的对称性来简化存储
return (Item1Id < Item2Id) ? Item1Id + "/" + Item2Id : Item2Id + "/" + Item1Id;
}
//判断矩阵中是否存在一对项目的评分差记录
public bool Contains(int Item1Id,int Item2Id)
{
return this.Keys.Contains(GetKey(Item1Id, Item2Id));
}
//获得评分差值矩阵中的Value值
public Rating this[int Item1Id,int Item2Id]{
get {
return this[this.GetKey(Item1Id,Item2Id)];
}
set {
this[this.GetKey(Item1Id, Item2Id)] = value;
}
}
}
接下来实现slopeOne类。首先创建一个RatingDifferenceCollection来保存矩阵,还要创建HashSet来保持系统中总共有那些项目:
//保存评分差异矩阵的字典
public RatingDifferenceCollection _DiffMarix = new RatingDifferenceCollection();
//系统中总共有多少项目
public HashSet _Items = new HashSet();
public void AddUserRatings(IDictionary userRatings)来实现差异矩阵的构建。
第二步:输入某个用户的评分记录,推算出其对其他项目的可能评分值,实现如下
//输入某个用户的评分记录,推算出对其他项目的可能评分值
public IDictionary Predict (IDictionary userRatings)
{
Dictionary Predictions = new Dictionary();
//遍历所有的项目
foreach (var itemId in this._Items)
{
//如果是该用户已经评论过的项目,忽略它
if (userRatings.Keys.Contains(itemId)) continue;
Rating itemRating = new Rating();
foreach (var userRating in userRatings)
{
if (userRating.Key == itemId) continue;
int inputItemId = userRating.Key;
if(_DiffMarix.Contains(itemId,inputItemId))
{
//在差异矩阵中找到相应的项
Rating diff=_DiffMarix[itemId,inputItemId];
itemRating.Value += diff.Freq * (userRating.Value+diff.AverageValue*((itemId
itemRating.Freq += diff.Freq;
}
}
Predictions.Add(itemId,itemRating.AverageValue);
}
return Predictions;
}
第三步就是测试了,根据对用户的评分推测来进行相应商品的推荐
userRating = new Dictionary();
userRating.Add(1,5);
userRating.Add(3,4);
IDictionary Predictions = test.Predict(userRating);
foreach(var rating in Predictions)
{
Console.WriteLine("Item"+rating.Key+"Rating:"+rating.Value);
}
输出:
Item2 Rating:5
Item4 Rating:6
因为矩阵的对称性,在代码中对差异矩阵的存储和相应评分项的存储都有所调整,这里不详细介绍了,完整的实现了一下这个算法,给出了一个Demo在附件中。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03