京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何快速打造一站式大数据分析平台_数据分析师
引言:舆论已经把大数据推上了巅峰,但是大数据在理论与应用之间仍存在不小距离。为了简化大数据应用难度,能否用统一的平台一站式帮助企业解决全链大数据分析的难题?针对这个问题,永洪科技经过多年的研究和探索之后给出的答案是“一站式大数据分析平台”。
近日,由由经管之家、CDA数据分析师主办的主题为“云顶之上,生态纵览”的“大数据生态纵览峰会”在北京举行。数十位来自全国各地的大数据行业知名专家、领军企业高管与上千位相关行业从业者汇聚一堂,共同探讨中国大数据行业的发展现状和未来走向。
刚刚过去的2015年,我国政府相继出台了关于积极推进“互联网+”行动指导意见和关于促进大数据战略、关于促进大数据发展的行动纲要等文件,并将实施网络强国战略和国家大数据战略写入十八届五中全会公报,将产业发展和强国之策相匹配,对十三五相关产业起到关键指导作用或者是一种关键的提示。
显然,大数据已经成为国家赢得现代竞争的战略性因素,但是,真正懂得利用大数据的企业还为数不多。正如CDA协会秘书长王霜峰所言,在实际应用中,很多企业的管理层特别是传统企业的管理层做出决策的时候更多是因为主观因素而不是靠数据分析和数据挖掘。
大数据作为一个新兴领域,在理论与实践,在技术与应用之间都存在不小的距离。可喜的是,现在已经有越来越多的企业尝试拥抱大数据。不过,如何更简单、快捷地做大数据分析?如何让业务人员也能够参与或主导数据分析、数据挖掘?
永洪科技联合创始人 谢玲
有没有一个平台能够一站式帮助企业搞定从数据准备到深度分析全链大数据分析的难题?针对这些问题,永洪科技经过多年研究和探索之后给出的答案是“一站式大数据分析平台”。在刚刚举行的永洪科技2015年度用户大会上,永洪科技正式发布了“一站式大数据分析平台”。
在“大数据生态纵览峰会”上,永洪科技联合创始人谢玲发表的《打造一站式大数据分析平台》主题演讲中指出,数据分析过程应该包括三个阶段:数据准备、探索式分析和深度分析,而永洪科技打造的一站式大数据分析平台正好对应着这三个阶段。
首先是数据准备阶段。客户在做数据分析过程中,需要对接各种类型的数据。这些数据可能来自企业各种系统数据,包括外网数据或者一些表格文本日志数据,这些数据可能相对原始一些,达不到分析的要求需要处理,例如粗粒度。这个过程是比较漫长也比较辛苦,那么是不是这个状态的数据就不可以做分析了呢?客户只需要将数据清洗成可以使用中间数据模型皆可,就可以做一个轻度建模,这就是永洪科技自服务数据准备阶段。
其次是探索式分析阶段。在这个阶段由业务人员或者IT人员来进行操作,他们可以根据需要对数据做各种组合,以及指标和维度的匹配,可以选择合适的计算方式和展现形式。谢玲分享了探索式分析一条实践经验:将建模层与业务层进行隔离才能得到一个最佳的探索式的效果。
最后一个阶段是符合客户探索模式的深度分析。当前面的一些组合分析不能满足客户的需求时,就需要做一些数据挖掘分析了。在这种场景下,客户往往面对的都是一些未知数据,它们的特征是不明显或者不能确定从哪些维度需要怎样组合才能得到所希望的深度分析,这个时候,就需要利用挖掘算法来支撑。
深度挖掘是很多客户可望而不可求的能力,毕竟深度挖掘并非一般人能玩的转,而CDO又是行业里的稀缺人才。但是,很多时候客户确实需要一些数据挖掘的算法来解答一些问题。
永洪科技一直也在思考对策:除了探索式分析之外,一站式大数据分析平台还能够让业务用户轻松使用深度分析。例如,归类、分类、回归和时序等重要环节。
谢玲指出,正是因为看到了客户的数据分析存在这三个阶段,永洪科技才顺应需求打造出现在的一站式大数据分析平台,希望给用户提供解决全链大数据分析问题的一致性体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01