大数据不应成为作恶的工具
牛津大学互联网学院教授维克托·迈尔-舍恩伯格曾以《大数据时代》《删除》两本看似“自相矛盾”的著作炸响了大数据的深潭,前者着重挖掘大数据的价值,而后者则指出在记忆不可磨灭状态下大数据对我们的生活造成的困扰,两书呈现了大数据的两面性。然而,在现实应用中,前者在商业及金融领域的潜在价值被不断挖掘,而《删除》中那些啼笑皆非的案例,总是被人们选择性遗忘,在大数据的裹挟下,我们正在进入被操控的“黑箱社会”。
美国马里兰大学教授弗兰克·帕斯奎尔所著的《黑箱社会:控制金钱和信息的数据法则》,分析了在互联网时代,各类数据收集挖掘企业是如何仔细检索、审视我们的生活和习惯,设置我们的生活议程,控制我们的视野范围,甚至左右社会的政治走向。帕斯奎尔可谓是向社会不公现象宣战的斗士,他曾在美国众议院的司法委员会上叫板谷歌、微软、雅虎,与他们的法律总顾问对峙。在书中,作者再燃愤怒之火,剑指这些掌握信息技术大权的互联网大鳄如何操控我们的生活,设置不平等的规则,将他人的命运甚至是整个经济社会的未来操纵于掌心。
所谓“黑箱社会”,是指在我们看不到的角落,有潜在的法则在暗暗起效,被黑色幕布遮掩之处,恰是人们的隐私、权益被暴露、利用、加工贩卖的狂欢之所。现代社会,人们已经无法查清自己被“贩卖”的次数,从第一次接到“神机妙算”的电话,到手机被各种借贷、炒房信息轰炸,再到自己被各种购物网站服务得“无微不至”,其实我们已经在大数据的牵引下,成为信息时代的透明人,是无数利益机构“精准营销”、“策略营销”的对象。
假如仅仅是商业上的“超服务”,尚在可接受的范围之类,但假如我们在互联网中留下的所有蛛丝马迹都被过度解读,无限联想,对于我们来说则可能是一场灾难。比如,A君在网上购买了一些糖尿病辅助食品,则被有心的大数据运营公司记录为“糖尿病患者”,而后他在求职过程中屡屡受挫,他始终不清楚导致他被拒的原因是他“被糖尿病”了。大数据带来的误解令我们百口莫辩,甚至年少轻狂时在网上偶发的言论都被当成“呈堂证供”。
大数据技术在给人们带来便捷的同时,也渗透进了人们生活的所有公共和私人空间,在人们完全不知情的情况下,我们的行为、特征、语言,被一遍遍计算、算计,它给我们贴上各种各样的标签,影响我们的日常生活,我们却鲜有申诉的权利。没有人能完全明了在数据的黑箱里究竟装了哪些运算法则,没有人能够在智能计算中“独善其身”。
技术秘密是大型互联网企业的万用挡箭牌,即使是在立法机构的一次次调整中,互联网企业也总能在现实的变通中,完美规避法律,毕竟没有哪个政府部门会在互联网时代拥有比企业更灵敏的嗅觉和快速的反应能力。
以书中所示的英国“Foundem”垂直搜索引擎公司来说,作为搜索领域的新生儿,简直是被谷歌玩弄于股掌之间,只要谷歌对其作出搜索降级的“处分决定”,它就难以在用户搜索关键词“价格对比”时出现在靠前的页面中,这对于一家互联网企业而言无异于灭顶之灾。只要谷歌稍动手脚,一家风光一时的企业就会在互联网中石沉大海,而谷歌想捧红哪家企业,也只要将其置顶,这家企业就会拥有源源不断的点击率。当公众质疑其搜索结果的公正性时,谷歌总会有相当多的理由以及技术秘密用以搪塞用户,只要谷歌不掀开自己的“技术黑箱”没有人知道里面究竟装的是规则与秩序,还是权利与利益。在流量为王的时代,谷歌仿若商业世界的帝王。当然,拥有这种权利的互联网企业,绝不仅谷歌一家,脸谱网、推特这些大型互联网企业在各自的领域亦有着相似的能量。
在美国的政治竞争中,互联网企业也会扮演重要的角色,它们甚至可以决定人们对这位候选人的认知度和整体印象,还可以设置话题议程,左右舆论风向,其强大的排序能力已经远远超出了其技术所应伸出的触角。一个被大型企业垄断的世界同独裁统治的世界一样是可怕的,一股缺乏有效制衡的“超力量”必然会不断地制造社会的“暗箱”,将规则与公平关进笼子里,而放出来的则是金钱与权利的欲望之火。
认清政府、大型企业之间的利益关系,更有助于我们看到很多社会问题的成因。就如同华尔街的贪婪并不能一味从金融大鳄身上找问题一样,其背后错综复杂的利益格局,信用评级机构、金融监管者及立法者之间相互缠绕的关系,才是问题的症结所在。在本书中,作者也用相当篇幅介绍了在金融领域“大数据”作恶的案例,其背后同样是人对数据的误用与滥用。
在《删除》中,维克托·迈尔-舍恩伯格曾就针对大数据带来的诸多社会病提出了以“删除”为核心,包括数字化节制、保护信息隐私权、打造良性的信息生态在内的六大对策。在《黑箱社会》中,作者继续进行了一些思路及方法上的探讨,虽在深度及广度上有所进步,可两位作者同样陷入了从揭露问题到提出希望式的书写。理论上正确的方法需要更多与现实短兵相接的能力,美好希望在现实中总会遭遇种种挫折尴尬。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13