
浅谈数据分析师的必备技能SQL
很久没写东西了,正好群里有童鞋最近要换工作,提到有关数据库方面的问题,个人认为,做数据分析的并没有必要把数据库开发之类的弄懂,你只需要从相应的数据库中调用你需要的数据即可,至于数据库设计相关的安全事务,开发之类的问题那是数据库工程师的事情,而作数据分析师的你了解SQL语言即可。当然,谁都不会嫌自己的知识多,掌握的东西越多对自己的发展当然也就越有利。
了解SQL的必要性
俗话说“巧妇难为无米之炊”,没有数据怎么分析。而SQL对于你来说就好比电脑的键盘鼠标,虽说没有了它也能照常运行,但对使用它的人来说灵活性却下降了许多。而这一点也正是许多数据分析从业者所缺少的(包括我),记得白鸦曾在他的博客中发表过数据分析师很少的言论。不管数据分析师在什么样的团队,其所起的作用都是统计和调查,数据挖掘、可行性及策略分析等类似的功能。真正的数据分析师,或者能达到企业期望要求的数据分析师为什么凤毛麟角。为什么满足企业要求的数据分析师凤毛麟角,其中一个主要的原因就是学统计的人不会数据库,而学计算机的同学不会建模分析。
SQL使得数据的采集过程变得更加方便快捷,此处的方便快捷可以从2方面得以体现,1.在分析数据时候不必再苦苦请求其他同事,自己需要什么数据自己直接去导,而不再是从别人手中接过譬如.xls或.csv之类的数据文档;2.便捷快速的清洗出自己所需要的原始数据,譬如你需要的是每个月销售额排名前20的产品相关数据,这时你就可以直接从数据库导出数据时来完成数据筛选的过程,而不是傻傻的导出所有产品销售数据再进行二次处理。关于如何利用SPSS从数据库中挑选自己所需要的数据参见Syntax代码旅途。此外,在EXCEL的多表操作中也涉及相关SQL语句,如数据透视表的应用等。
SQL查询相关小技巧
·使用AND时,将不为真的条件放在前面
数据库系统遵循运算符的优先级,并且运算过程是从左至右的,将条件不为真的放在前面,则能够省去and后面的相关运算,以达到减少数据库系统运算工作量的目的,提高工作效率。
·使用OR运算符时,则将最可能为真的条件放在前面
和上面and的原理类似,and运算符要求两边条件都为真,整个条件才为真,而or只需要一边为真,将条件为真的放在前面可使or运算符不需要检查右边的条件,从而节约时间,提高工作效率。
·distinct比group by更快
distinct和group by通常起限制结果为唯一的记录行的作用,处理此类问题时distinct往往比group by更加迅速。
·限制联合的结果
从数据库中提取的信息量越少,速度也就越快,而加适当的限制条件除了满足自身的需求之外,另外一个原因就是为了加快处理查询速度。e.g:
select var1, var2 from table1 inner join table2 on table1.id=table2.id where condition;
·对子查询使用in运算符
在子查询过程中,运用select语句往往会使数据库系统考虑更多的东西,从而降低工作效率,相比较而言,运用in运算符则可以有效的解决这个问题。e.g:下面的子查询中第1句将比第2句更加有效
select var1, var2 from table1 where var1 in (select var1 from table2 where condition);
select var1, var2 from table1 where var1=(select var1 from table2 where condition) ;
·尽量避免使用select * from
指定确定的列可以让你清楚的了解你所需要采集的变量,利用select * from不只是效率低下,更不利于你的后续分析,所以对于select * from则是能避免则尽量避免。数据分析师培训
·对整数类型列进行搜索
这类问题主要针对字符变量的查询而言,对应的字符变量如果有相应的编码对应,直接将编码设置为查询条件将比直接查询字符变量来得更加迅速。
数据采集中常用的SQL语句
相同的SQL语句运用到不同数据库中会有略微的差别,对字符变量的要求,相关函数的变化,以及语法规则的不同等等,例如:oracle数据库中对字段命名别名时不需要as 字符,没有month(),year()等时间函数等等,access数据库中在使用inner join执行内部联合时条件需用(),当然还有很多的细微差别,大家可以自己去寻找总结。下面的示例以SQL SERVER为基础编写。
1. 抽取非重复数据
select distinct var1 from tableName;
2. 抽取某个时间段间的数据
select var1,var2 from 数据表 where 字段名 between 时间1 and 时间2;
3. 连接多个变量
select ‘123’+cast(456 as varchar);
select ‘123’+cast(456 as varchar)+’789′;
4. 用SQL语句找出表名为Table1中的处在ID字段中1-200条记录中Name字段包含w的所有记录
select * from Table1 where id between 1 and 200 and Name like ‘%w%’;
5. 找出拥有超过10名客户的地区的列表
select country from test group by country having count(customerId)>10;
6. 关于取出每个部门工资最高的前三人
select * from table t where 工资 in (select top 3 工资 from table where 部门 = t.部门 order by 工资 desc);
7. 两个结构完全相同的表a和b,主键为index,使用SQL语句,把a表中存在但在b表中不存在的数据插入的b表中
insert into b select * from a where not exists(select * from b where “index”=a.”index”);
8.从一个数据库中的多个数据表提取相关变量
Select table1.var1,table2.var2,table2.var3,
From table1 inner join table2
On tabel1.var1=table2.var1
Inner join table3
On tabel1.var2=table3.var2
(order by ……)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10