京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈数据分析师的必备技能SQL
很久没写东西了,正好群里有童鞋最近要换工作,提到有关数据库方面的问题,个人认为,做数据分析的并没有必要把数据库开发之类的弄懂,你只需要从相应的数据库中调用你需要的数据即可,至于数据库设计相关的安全事务,开发之类的问题那是数据库工程师的事情,而作数据分析师的你了解SQL语言即可。当然,谁都不会嫌自己的知识多,掌握的东西越多对自己的发展当然也就越有利。
了解SQL的必要性
俗话说“巧妇难为无米之炊”,没有数据怎么分析。而SQL对于你来说就好比电脑的键盘鼠标,虽说没有了它也能照常运行,但对使用它的人来说灵活性却下降了许多。而这一点也正是许多数据分析从业者所缺少的(包括我),记得白鸦曾在他的博客中发表过数据分析师很少的言论。不管数据分析师在什么样的团队,其所起的作用都是统计和调查,数据挖掘、可行性及策略分析等类似的功能。真正的数据分析师,或者能达到企业期望要求的数据分析师为什么凤毛麟角。为什么满足企业要求的数据分析师凤毛麟角,其中一个主要的原因就是学统计的人不会数据库,而学计算机的同学不会建模分析。
SQL使得数据的采集过程变得更加方便快捷,此处的方便快捷可以从2方面得以体现,1.在分析数据时候不必再苦苦请求其他同事,自己需要什么数据自己直接去导,而不再是从别人手中接过譬如.xls或.csv之类的数据文档;2.便捷快速的清洗出自己所需要的原始数据,譬如你需要的是每个月销售额排名前20的产品相关数据,这时你就可以直接从数据库导出数据时来完成数据筛选的过程,而不是傻傻的导出所有产品销售数据再进行二次处理。关于如何利用SPSS从数据库中挑选自己所需要的数据参见Syntax代码旅途。此外,在EXCEL的多表操作中也涉及相关SQL语句,如数据透视表的应用等。
SQL查询相关小技巧
·使用AND时,将不为真的条件放在前面
数据库系统遵循运算符的优先级,并且运算过程是从左至右的,将条件不为真的放在前面,则能够省去and后面的相关运算,以达到减少数据库系统运算工作量的目的,提高工作效率。
·使用OR运算符时,则将最可能为真的条件放在前面
和上面and的原理类似,and运算符要求两边条件都为真,整个条件才为真,而or只需要一边为真,将条件为真的放在前面可使or运算符不需要检查右边的条件,从而节约时间,提高工作效率。
·distinct比group by更快
distinct和group by通常起限制结果为唯一的记录行的作用,处理此类问题时distinct往往比group by更加迅速。
·限制联合的结果
从数据库中提取的信息量越少,速度也就越快,而加适当的限制条件除了满足自身的需求之外,另外一个原因就是为了加快处理查询速度。e.g:
select var1, var2 from table1 inner join table2 on table1.id=table2.id where condition;
·对子查询使用in运算符
在子查询过程中,运用select语句往往会使数据库系统考虑更多的东西,从而降低工作效率,相比较而言,运用in运算符则可以有效的解决这个问题。e.g:下面的子查询中第1句将比第2句更加有效
select var1, var2 from table1 where var1 in (select var1 from table2 where condition);
select var1, var2 from table1 where var1=(select var1 from table2 where condition) ;
·尽量避免使用select * from
指定确定的列可以让你清楚的了解你所需要采集的变量,利用select * from不只是效率低下,更不利于你的后续分析,所以对于select * from则是能避免则尽量避免。数据分析师培训
·对整数类型列进行搜索
这类问题主要针对字符变量的查询而言,对应的字符变量如果有相应的编码对应,直接将编码设置为查询条件将比直接查询字符变量来得更加迅速。
数据采集中常用的SQL语句
相同的SQL语句运用到不同数据库中会有略微的差别,对字符变量的要求,相关函数的变化,以及语法规则的不同等等,例如:oracle数据库中对字段命名别名时不需要as 字符,没有month(),year()等时间函数等等,access数据库中在使用inner join执行内部联合时条件需用(),当然还有很多的细微差别,大家可以自己去寻找总结。下面的示例以SQL SERVER为基础编写。
1. 抽取非重复数据
select distinct var1 from tableName;
2. 抽取某个时间段间的数据
select var1,var2 from 数据表 where 字段名 between 时间1 and 时间2;
3. 连接多个变量
select ‘123’+cast(456 as varchar);
select ‘123’+cast(456 as varchar)+’789′;
4. 用SQL语句找出表名为Table1中的处在ID字段中1-200条记录中Name字段包含w的所有记录
select * from Table1 where id between 1 and 200 and Name like ‘%w%’;
5. 找出拥有超过10名客户的地区的列表
select country from test group by country having count(customerId)>10;
6. 关于取出每个部门工资最高的前三人
select * from table t where 工资 in (select top 3 工资 from table where 部门 = t.部门 order by 工资 desc);
7. 两个结构完全相同的表a和b,主键为index,使用SQL语句,把a表中存在但在b表中不存在的数据插入的b表中
insert into b select * from a where not exists(select * from b where “index”=a.”index”);
8.从一个数据库中的多个数据表提取相关变量
Select table1.var1,table2.var2,table2.var3,
From table1 inner join table2
On tabel1.var1=table2.var1
Inner join table3
On tabel1.var2=table3.var2
(order by ……)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23