
数据挖掘的分类算法
数据分析师对数据进行数据挖掘时,会运用很多算法,其中一种是分类算法,下面就对数据分析师运用分类算法进行一下详解,如下:
@@ -0,0 +1,15 @@ | ||
+packageDataMining_HITS; | ||
+ | ||
+/** | ||
+* HITSÁ´½Ó·ÖÎöËã·¨ | ||
+* @author lyq | ||
+* | ||
+*/ | ||
+publicclassClient{ | ||
+publicstaticvoidmain(String[]args){ | ||
+StringfilePath="C:\\Users\\lyq\\Desktop\\icon\\input.txt"; | ||
+ | ||
+HITSTooltool=newHITSTool(filePath); | ||
+ tool.printResultPage(); | ||
+ } | ||
+} |
@@ -0,0 +1,150 @@ | ||
+packageDataMining_HITS; | ||
+ | ||
+importjava.io.BufferedReader; | ||
+importjava.io.File; | ||
+importjava.io.FileReader; | ||
+importjava.io.IOException; | ||
+importjava.util.ArrayList; | ||
+ | ||
+/** | ||
+* HITS链接分析算法工具类 | ||
+* @author lyq | ||
+* | ||
+*/ | ||
+publicclassHITSTool{ | ||
+//输入数据文件地址 | ||
+privateStringfilePath; | ||
+//网页个数 | ||
+privateintpageNum; | ||
+//网页Authority权威值 | ||
+privatedouble[] authority; | ||
+//网页hub中心值 | ||
+privatedouble[] hub; | ||
+//链接矩阵关系 | ||
+privateint[][] linkMatrix; | ||
+//网页种类 | ||
+privateArrayList<String>pageClass; | ||
+ | ||
+publicHITSTool(StringfilePath){ | ||
+this.filePath=filePath; | ||
+ readDataFile(); | ||
+ } | ||
+ | ||
+/** | ||
+* 从文件中读取数据 | ||
+*/ | ||
+privatevoidreadDataFile() { | ||
+Filefile=newFile(filePath); | ||
+ArrayList<String[]>dataArray=newArrayList<String[]>(); | ||
+ | ||
+try{ | ||
+BufferedReaderin=newBufferedReader(newFileReader(file)); | ||
+Stringstr; | ||
+String[] tempArray; | ||
+while((str=in.readLine())!=null) { | ||
+ tempArray=str.split(""); | ||
+ dataArray.add(tempArray); | ||
+ } | ||
+ in.close(); | ||
+ }catch(IOExceptione) { | ||
+ e.getStackTrace(); | ||
+ } | ||
+ | ||
+ pageClass=newArrayList<>(); | ||
+// 统计网页类型种数 | ||
+for(String[] array:dataArray) { | ||
+for(Strings:array) { | ||
+if(!pageClass.contains(s)) { | ||
+ pageClass.add(s); | ||
+ } | ||
+ } | ||
+ } | ||
+ | ||
+inti=0; | ||
+intj=0; | ||
+ pageNum=pageClass.size(); | ||
+ linkMatrix=newint[pageNum][pageNum]; | ||
+ authority=newdouble[pageNum]; | ||
+ hub=newdouble[pageNum]; | ||
+for(intk=0; k<pageNum; k++){ | ||
+//初始时默认权威值和中心值都为1 | ||
+ authority[k]=1; | ||
+ hub[k]=1; | ||
+ } | ||
+ | ||
+for(String[] array:dataArray) { | ||
+ | ||
+ i=Integer.parseInt(array[0]); | ||
+ j=Integer.parseInt(array[1]); | ||
+ | ||
+// 设置linkMatrix[i][j]为1代表i网页包含指向j网页的链接 | ||
+ linkMatrix[i-1][j-1]=1; | ||
+ } | ||
+ } | ||
+ | ||
+/** | ||
+* 输出结果页面,也就是authority权威值最高的页面 | ||
+*/ | ||
+publicvoidprintResultPage(){ | ||
+//最大Hub和Authority值,用于后面的归一化计算 | ||
+doublemaxHub=0; | ||
+doublemaxAuthority=0; | ||
+intmaxAuthorityIndex=0; | ||
+//误差值,用于收敛判断 | ||
+doubleerror=Integer.MAX_VALUE; | ||
+double[] newHub=newdouble[pageNum]; | ||
+double[] newAuthority=newdouble[pageNum]; | ||
+ | ||
+ | ||
+while(error>0.01*pageNum){ | ||
+for(intk=0; k<pageNum; k++){ | ||
+ newHub[k]=0; | ||
+ newAuthority[k]=0; | ||
+ } | ||
+ | ||
+//hub和authority值的更新计算 | ||
+for(inti=0; i<pageNum; i++){ | ||
+for(intj=0; j<pageNum; j++){ | ||
+if(linkMatrix[i][j]==1){ | ||
+ newHub[i]+=authority[j]; | ||
+ newAuthority[j]+=hub[i]; | ||
+ } | ||
+ } | ||
+ } | ||
+ | ||
+ maxHub=0; | ||
+ maxAuthority=0; | ||
+for(intk=0; k<pageNum; k++){ | ||
+if(newHub[k]>maxHub){ | ||
+ maxHub=newHub[k]; | ||
+ } | ||
+ | ||
+if(newAuthority[k]>maxAuthority){ | ||
+ maxAuthority=newAuthority[k]; | ||
+ maxAuthorityIndex=k; | ||
+ } | ||
+ } | ||
+ | ||
+ error=0; | ||
+//归一化处理 | ||
+for(intk=0; k<pageNum; k++){ | ||
+ newHub[k]/=maxHub; | ||
+ newAuthority[k]/=maxAuthority; | ||
+ | ||
+ error+=Math.abs(newHub[k]-hub[k]); | ||
+System.out.println(newAuthority[k]+":"+newHub[k]); | ||
+ | ||
+ hub[k]=newHub[k]; | ||
+ authority[k]=newAuthority[k]; | ||
+ } | ||
+System.out.println("---------"); | ||
+ } | ||
+ | ||
+System.out.println("****最终收敛的网页的权威值和中心值****"); | ||
+for(intk=0; k<pageNum; k++){ | ||
+System.out.println("网页"+pageClass.get(k)+":"+authority[k]+":"+hub[k]); | ||
+ } | ||
+System.out.println("权威值最高的网页为:网页"+pageClass.get(maxAuthorityIndex)); | ||
+ } | ||
+ | ||
+} |
@@ -0,0 +1,4 @@ | ||
+1 2 | ||
+1 3 | ||
+2 3 | ||
+3 1 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02