
标准正态分布函数的快速计算方法
标准正态分布的分布函数 $\Phi(x)$ 可以说是"数据分析师"统计计算中非常重要的一个函数,基本上有正态分布的地方都或多或少会用上它。在一些特定的问题中,我们"数据分析师"需要大量多次地计算这个函数的取值,比如我经常需要算正态分布与另一个随机变量之和的分布,这时候就需要用到数值积分,而被积函数就包含 $\Phi(x)$。如果 $Z\sim N(0,1), X\sim f(x)$,$f$ 是 $X$ 的密度函数,那么 $Z+X$ 的分布函数就是
我们"数据分析师"知道,$\Phi(x)$ 没有简单的显式表达式,所以它需要用一定的数值方法进行计算。在大部分的科学计算软件中,计算的精度往往是第一位的,因此其算法一般会比较复杂。当这个函数需要被计算成千上万次的时候,速度可能就成为了一个瓶颈。
当然有问题就会有对策,一种常见的做法是略微放弃一些精度,以换取更简单的计算。在大部分实际应用中,一个合理的误差大小,例如 $10^{-7}$,一般就足够了。在这篇文章中,给大家介绍两种简单的方法,它们都比R中自带的 pnorm() 更快,且误差都控制在 $10^{-7}$ 的级别。
第一种办法来自于经典参考书 Abramowitz and Stegun: Handbook of Mathematical Functions 的 公式 26.2.17 。其基本思想是把 $\Phi(x)$ 表达成正态密度函数 $\phi(x)$ 和一个有理函数的乘积。这种办法可以保证误差小于 $7.5\times 10^{-8}$,一段C++实现可以在 这里 找到。(代码中的常数与书中的略有区别,是因为代码是针对误差函数 $\mathrm{erf}(x)$ 编写的,它与 $\Phi(x)$ 相差一些常数)
我们来对比一下这种方法与R中 pnorm() 的速度,并验证其精度。
library(Rcpp) sourceCpp("test_as26217.cpp") x = seq(-6, 6, by = 1e-6) system.time(y <- pnorm(x)) ## user system elapsed ## 1.049 0.000 1.048 system.time(asy <- r_as26217ncdf(x)) ## user system elapsed ## 0.293 0.019 0.311 max(abs(y - asy)) ## [1] 6.968772e-08
可以看出,A&S 26.2.17 的速度大约是 pnorm() 的三倍,且误差也在预定的范围里,是对计算效率的一次巨大提升。
那么还有没有可能更快呢?答案是肯定的,而且你其实已经多次使用过这种方法了。怎么,不相信?看看下面这张图,你就明白了。
没错,这种更快的方法其实就是两个字:查表。它的基本想法是,我们预先计算好一系列的函数取值 $(x_i,\Phi(x_i))$,然后当我们需要计算某个点 $x_0$ 时,就找到离它最近的两个点 $x_k$ 和 $x_{k+1}$,再用线性插值的方法得到 $\Phi(x_0)$ 的近似取值:
什么?觉得这个方法太简单了?先别急,这里面还有不少学问。之前我们"数据分析师"说了,我们需要保证这种方法的误差不超过 $\epsilon=10^{-7}$,因此就需要合理地选择预先计算的点。由于 $\Phi(-x)=1-\Phi(x)$,我们暂且只需要考虑 $x$ 为正的情况。如果让 $x_i = ih,i=0,1,\ldots,N$,那么对函数 $f$ 进行线性插值的误差将不超过( 来源 )
其中 $\Vert f’’ \Vert_{\infty}$ 是函数二阶导绝对值的最大值。对于正态分布函数来说,它等于 $\phi(1)\approx 0.242$。于是令 $E(x)=10^{-7}$,我们就可以解出 $h\approx 0.001818$。最后,只要 $x_N>5.199$,即 $N\ge 2860$ 并另所有 $x>x_N$ 的取值等于1,就可以保证整个实数域上 $\Phi(x)$ 的近似误差都不超过 $10^{-7}$。
这种简单方法的实现我放在了 Github 上 ,源程序和测试代码也可以在文章最后找到。下面给出它的表现:
library(Rcpp) sourceCpp("test_fastncdf.cpp") x = seq(-6, 6, by = 1e-6) system.time(fasty <- r_fastncdf(x)) ## user system elapsed ## 0.043 0.024 0.066 max(abs(y - fasty)) ## [1] 9.99999e-08
与之前的结果相比,相当于速度是 pnorm() 的15倍!
我们似乎一直以为,在计算机和统计软件普及以后,一些传统的做法就会慢慢被淘汰,例如现在除了考试,或许大部分的时间我们都是在用软件而不是正态概率表。从教学与实际应用的角度来看,这种做法是 应该进行推广和普及的 ,但这也不妨碍我们从一些“旧知识”中汲取营养。关于这种大巧若拙的做法的故事还有很多,比如广为流传的 这一则 。在计算资源匮乏的年代,数据科学家"数据分析师"们想出了各种巧妙的办法来解决他们遇到的各种问题。现如今计算机的性能已经远不是当年可以媲迹,但前人的很多智慧却依然穿透了时间来为现在的我们提供帮助,不得不说这也是一种缘分吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05