标准正态分布函数的快速计算方法
标准正态分布的分布函数 $\Phi(x)$ 可以说是"数据分析师"统计计算中非常重要的一个函数,基本上有正态分布的地方都或多或少会用上它。在一些特定的问题中,我们"数据分析师"需要大量多次地计算这个函数的取值,比如我经常需要算正态分布与另一个随机变量之和的分布,这时候就需要用到数值积分,而被积函数就包含 $\Phi(x)$。如果 $Z\sim N(0,1), X\sim f(x)$,$f$ 是 $X$ 的密度函数,那么 $Z+X$ 的分布函数就是
我们"数据分析师"知道,$\Phi(x)$ 没有简单的显式表达式,所以它需要用一定的数值方法进行计算。在大部分的科学计算软件中,计算的精度往往是第一位的,因此其算法一般会比较复杂。当这个函数需要被计算成千上万次的时候,速度可能就成为了一个瓶颈。
当然有问题就会有对策,一种常见的做法是略微放弃一些精度,以换取更简单的计算。在大部分实际应用中,一个合理的误差大小,例如 $10^{-7}$,一般就足够了。在这篇文章中,给大家介绍两种简单的方法,它们都比R中自带的 pnorm() 更快,且误差都控制在 $10^{-7}$ 的级别。
第一种办法来自于经典参考书 Abramowitz and Stegun: Handbook of Mathematical Functions 的 公式 26.2.17 。其基本思想是把 $\Phi(x)$ 表达成正态密度函数 $\phi(x)$ 和一个有理函数的乘积。这种办法可以保证误差小于 $7.5\times 10^{-8}$,一段C++实现可以在 这里 找到。(代码中的常数与书中的略有区别,是因为代码是针对误差函数 $\mathrm{erf}(x)$ 编写的,它与 $\Phi(x)$ 相差一些常数)
我们来对比一下这种方法与R中 pnorm() 的速度,并验证其精度。
library(Rcpp) sourceCpp("test_as26217.cpp") x = seq(-6, 6, by = 1e-6) system.time(y <- pnorm(x)) ## user system elapsed ## 1.049 0.000 1.048 system.time(asy <- r_as26217ncdf(x)) ## user system elapsed ## 0.293 0.019 0.311 max(abs(y - asy)) ## [1] 6.968772e-08
可以看出,A&S 26.2.17 的速度大约是 pnorm() 的三倍,且误差也在预定的范围里,是对计算效率的一次巨大提升。
那么还有没有可能更快呢?答案是肯定的,而且你其实已经多次使用过这种方法了。怎么,不相信?看看下面这张图,你就明白了。
没错,这种更快的方法其实就是两个字:查表。它的基本想法是,我们预先计算好一系列的函数取值 $(x_i,\Phi(x_i))$,然后当我们需要计算某个点 $x_0$ 时,就找到离它最近的两个点 $x_k$ 和 $x_{k+1}$,再用线性插值的方法得到 $\Phi(x_0)$ 的近似取值:
什么?觉得这个方法太简单了?先别急,这里面还有不少学问。之前我们"数据分析师"说了,我们需要保证这种方法的误差不超过 $\epsilon=10^{-7}$,因此就需要合理地选择预先计算的点。由于 $\Phi(-x)=1-\Phi(x)$,我们暂且只需要考虑 $x$ 为正的情况。如果让 $x_i = ih,i=0,1,\ldots,N$,那么对函数 $f$ 进行线性插值的误差将不超过( 来源 )
其中 $\Vert f’’ \Vert_{\infty}$ 是函数二阶导绝对值的最大值。对于正态分布函数来说,它等于 $\phi(1)\approx 0.242$。于是令 $E(x)=10^{-7}$,我们就可以解出 $h\approx 0.001818$。最后,只要 $x_N>5.199$,即 $N\ge 2860$ 并另所有 $x>x_N$ 的取值等于1,就可以保证整个实数域上 $\Phi(x)$ 的近似误差都不超过 $10^{-7}$。
这种简单方法的实现我放在了 Github 上 ,源程序和测试代码也可以在文章最后找到。下面给出它的表现:
library(Rcpp) sourceCpp("test_fastncdf.cpp") x = seq(-6, 6, by = 1e-6) system.time(fasty <- r_fastncdf(x)) ## user system elapsed ## 0.043 0.024 0.066 max(abs(y - fasty)) ## [1] 9.99999e-08
与之前的结果相比,相当于速度是 pnorm() 的15倍!
我们似乎一直以为,在计算机和统计软件普及以后,一些传统的做法就会慢慢被淘汰,例如现在除了考试,或许大部分的时间我们都是在用软件而不是正态概率表。从教学与实际应用的角度来看,这种做法是 应该进行推广和普及的 ,但这也不妨碍我们从一些“旧知识”中汲取营养。关于这种大巧若拙的做法的故事还有很多,比如广为流传的 这一则 。在计算资源匮乏的年代,数据科学家"数据分析师"们想出了各种巧妙的办法来解决他们遇到的各种问题。现如今计算机的性能已经远不是当年可以媲迹,但前人的很多智慧却依然穿透了时间来为现在的我们提供帮助,不得不说这也是一种缘分吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10