
标准正态分布函数的快速计算方法
标准正态分布的分布函数 $\Phi(x)$ 可以说是"数据分析师"统计计算中非常重要的一个函数,基本上有正态分布的地方都或多或少会用上它。在一些特定的问题中,我们"数据分析师"需要大量多次地计算这个函数的取值,比如我经常需要算正态分布与另一个随机变量之和的分布,这时候就需要用到数值积分,而被积函数就包含 $\Phi(x)$。如果 $Z\sim N(0,1), X\sim f(x)$,$f$ 是 $X$ 的密度函数,那么 $Z+X$ 的分布函数就是
我们"数据分析师"知道,$\Phi(x)$ 没有简单的显式表达式,所以它需要用一定的数值方法进行计算。在大部分的科学计算软件中,计算的精度往往是第一位的,因此其算法一般会比较复杂。当这个函数需要被计算成千上万次的时候,速度可能就成为了一个瓶颈。
当然有问题就会有对策,一种常见的做法是略微放弃一些精度,以换取更简单的计算。在大部分实际应用中,一个合理的误差大小,例如 $10^{-7}$,一般就足够了。在这篇文章中,给大家介绍两种简单的方法,它们都比R中自带的 pnorm() 更快,且误差都控制在 $10^{-7}$ 的级别。
第一种办法来自于经典参考书 Abramowitz and Stegun: Handbook of Mathematical Functions 的 公式 26.2.17 。其基本思想是把 $\Phi(x)$ 表达成正态密度函数 $\phi(x)$ 和一个有理函数的乘积。这种办法可以保证误差小于 $7.5\times 10^{-8}$,一段C++实现可以在 这里 找到。(代码中的常数与书中的略有区别,是因为代码是针对误差函数 $\mathrm{erf}(x)$ 编写的,它与 $\Phi(x)$ 相差一些常数)
我们来对比一下这种方法与R中 pnorm() 的速度,并验证其精度。
library(Rcpp) sourceCpp("test_as26217.cpp") x = seq(-6, 6, by = 1e-6) system.time(y <- pnorm(x)) ## user system elapsed ## 1.049 0.000 1.048 system.time(asy <- r_as26217ncdf(x)) ## user system elapsed ## 0.293 0.019 0.311 max(abs(y - asy)) ## [1] 6.968772e-08
可以看出,A&S 26.2.17 的速度大约是 pnorm() 的三倍,且误差也在预定的范围里,是对计算效率的一次巨大提升。
那么还有没有可能更快呢?答案是肯定的,而且你其实已经多次使用过这种方法了。怎么,不相信?看看下面这张图,你就明白了。
没错,这种更快的方法其实就是两个字:查表。它的基本想法是,我们预先计算好一系列的函数取值 $(x_i,\Phi(x_i))$,然后当我们需要计算某个点 $x_0$ 时,就找到离它最近的两个点 $x_k$ 和 $x_{k+1}$,再用线性插值的方法得到 $\Phi(x_0)$ 的近似取值:
什么?觉得这个方法太简单了?先别急,这里面还有不少学问。之前我们"数据分析师"说了,我们需要保证这种方法的误差不超过 $\epsilon=10^{-7}$,因此就需要合理地选择预先计算的点。由于 $\Phi(-x)=1-\Phi(x)$,我们暂且只需要考虑 $x$ 为正的情况。如果让 $x_i = ih,i=0,1,\ldots,N$,那么对函数 $f$ 进行线性插值的误差将不超过( 来源 )
其中 $\Vert f’’ \Vert_{\infty}$ 是函数二阶导绝对值的最大值。对于正态分布函数来说,它等于 $\phi(1)\approx 0.242$。于是令 $E(x)=10^{-7}$,我们就可以解出 $h\approx 0.001818$。最后,只要 $x_N>5.199$,即 $N\ge 2860$ 并另所有 $x>x_N$ 的取值等于1,就可以保证整个实数域上 $\Phi(x)$ 的近似误差都不超过 $10^{-7}$。
这种简单方法的实现我放在了 Github 上 ,源程序和测试代码也可以在文章最后找到。下面给出它的表现:
library(Rcpp) sourceCpp("test_fastncdf.cpp") x = seq(-6, 6, by = 1e-6) system.time(fasty <- r_fastncdf(x)) ## user system elapsed ## 0.043 0.024 0.066 max(abs(y - fasty)) ## [1] 9.99999e-08
与之前的结果相比,相当于速度是 pnorm() 的15倍!
我们似乎一直以为,在计算机和统计软件普及以后,一些传统的做法就会慢慢被淘汰,例如现在除了考试,或许大部分的时间我们都是在用软件而不是正态概率表。从教学与实际应用的角度来看,这种做法是 应该进行推广和普及的 ,但这也不妨碍我们从一些“旧知识”中汲取营养。关于这种大巧若拙的做法的故事还有很多,比如广为流传的 这一则 。在计算资源匮乏的年代,数据科学家"数据分析师"们想出了各种巧妙的办法来解决他们遇到的各种问题。现如今计算机的性能已经远不是当年可以媲迹,但前人的很多智慧却依然穿透了时间来为现在的我们提供帮助,不得不说这也是一种缘分吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03