在工作中,很多刚接触不久的数据分析师都会遇到这样的问题,数据分析报告中我们该选择什么样的统计图表呢?其实,对于于不同的数据分析工具收集到的数据千差万别,基于这些数据生成展示的统计图表也不尽相同;而且数据分析师制作各种报告时,也常常纠结于如何选择合适的图表表达数据诉求,因此我们有必要去理解一些常用数据分析统计图表的特点、使用方法以及注意点。数据分析中主要使用以下几种图表。
折线图:按照时间序列分析数据的变化趋势时使用
柱 图:指定一个分析轴进行数据大小的比较时使用
饼 图:指定一个分析轴进行所占比例的比较时使用
仪表图:单独关注一个指标的绩效表现时使用
1.折线图
折线图主要是在按照时间序列分析指标值变化趋势的情况下使用。通常情况下X轴设定为时间,Y轴设定为其他指标值。分析页面浏览数,访问者数,转化数(率)等指标整体变化趋势时多用折线图。这些指标值用折线图表示之后,可以明确每小时段、天、周、月或年的变化趋势,得到类似“平时工作日的访问比较多,周末的访问比较少”,“这个月转化数较上个月下降了近10%”等分析结论。
那么接下来就让我们去见识一下网站分析所使用的几组折线图(X轴都设定为时间)。
首先,Y轴设定为页面浏览数的折线图。表示成折线图之后页面浏览数的增减就一目了然了。
(※折线图 ↓)
下图表示了同时涵盖“初次访问”和“再访问”的页面浏览数。在相同单位下这些指标值都可以统合在一个图表中显示。
(※细分折线图 ↓)
这样一来就可以细化分析一些趋势变化的原因。在上图中,可以发现:8月16日的流量短暂峰值主要来自于初访者。
接下来看下图。是【今年8月】和【去年8月】每一天的页面浏览数同比数据。可以看出今年不仅总体流量有所提升,而且有效缓解了每逢周末流量减少的现象。
(※对比折线图 ↓)
做折线图时的注意事项
在做成折线图时请注意以下几点。
1. 图表中的指标要明示(即Y轴数值代表的指标)。
2. 当X轴有多于5个项目时推荐使用折线图,当不足5个项目时可以使用柱图。
3. 在一组折线图中如果折线超过了4条,由于折线之间有重复的部分所以会看不清楚。这种情况下,可以拆分成两组折线图去表现。
2.柱图
柱图主要是以特定的轴线来比较指标值的大小的情况下使用。柱图是网站分析中最常使用的一种图表。柱图可分为竖柱图、横柱图和累积竖柱图等。下面说明一下这几种柱图的特点。
首先是【横柱图】。横柱图也叫条形图,一般用来表示一类项目的横向对比,例如按访问量对网页的排名、按转化率大小对广告媒体的排名等。横柱图的X轴通常代表确定数值大小的刻度尺。下图是按访问量大小对网站页面的排名图:
(※横柱图 ↓)
其次是【竖柱图】。竖柱图和折线图用法类似,常用来表示时间序列的指标数值变化情况。不同的是,如果X轴上的时间点不多(例如低于5个)可以选择使用竖柱图;或者根据数据的性质和图表想要表达的侧重点来选择:竖柱图偏向于表现数量,而折线图偏向于表现趋势。
讲到这里还可以看出【竖柱图】表现的是数据随时间变化的关系,而【横柱图】所表示的项目对比指在某一时间点或时间段内的数据。也许有人会问“横柱图的数据不一样可以通过竖柱图表现出来吗?”,理论上可以,但通常横柱图中的项目名称(例如上例中的网页标题)都偏长,如果通过竖柱图表现很难在一行内展现,可能会出现折行的现象。
下图就是表现访问次数随时间变化的竖柱图。
(※竖柱图 ↓)
柱图中还有一种叫做【累积竖柱图】。当我们想确认某一个数值的详细内容时使用累积竖柱图就很方便了。下图是对访问次数按网站的访问来源(广告进入、直接访问进入、搜索引擎进入)细分做成图表,这样可以很容易的判断网站进入方式的详细情况。
(※累积竖柱图 ↓)
做成柱图的注意事项
在做成柱图的时候请注意以下几点。
1. 注意竖柱图和横柱图的区分使用
2. 柱的数量过多导致柱间空隙很小时,可以选择使用折线图
3. 【数量】和【比例】最好做成不同的柱图
3. 饼图
饼图主要是在分析整体指标值中的成分比例时使用的。特点就是能够一眼分辨出哪一个项目所占的比例最大。下图中很容易的就能发现网站的进入页主要是“数码林的博客”页,比例将近达到了40%。
(※饼图 ↓)
做成饼图时的注意事项
在做成饼图时请注意以下几点。
1. 由于饼图是为了确认比例而不是数量,所以饼图上表示的是比例,如果想要表现总数值的话,可以添加一行n=XXXX这样的描述。
2. 饼图中的构成元素是按照百分比降序排列的(【其他】除外)
3. 由于人们习惯顺时针看东西,所以最好把最重要的内容放在12点位置附近
4. 当饼图中的构成元素有10种以上时,排在后面的数据总结在一起用【其他】来表示。
4.仪表图
仪表图是为了关注单独一个指标的表现时使用。特点是能给出指标的安全范围和警戒范围。
例如将跳出率的表现以25%、50%为界限分为三个绩效区域,并分别以绿色、黄色和红色来区分三个绩效区域,其中红色表示警戒区域。从下图可以一眼看出9月的跳出率已经超过50%进入警戒区域,需要引起重视了。
(※仪表图 ↓)
做成仪表图时的注意事项
在做成仪表图时请注意以下几点。
1. 注意绩效表现区域的划分,一般利用两个边缘值分为三个区域
2. 红色警戒区域出现在左侧还是右侧和指标的业务属性相关,例如跳出率越高越接近警戒区域,所以红色区域在右侧。cda数据分析师培训
最后援引麦肯锡的《用图表说话》中一段话来总结一下关于图表的选择:
(1)图表是语言的一种形式,它的存在是为了比表格更快更好的表达你想要表达的内容
(2)决定图表的不是数据也不是尺寸,而是你想说明的主题
(3)图表贵精不贵多,只有当图表能帮你表达主题时才使用
(4)图表是直观教具,但它不能取代书写和讲述,在帮你传达主题时,它能起到重要作用
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20